Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble watches light echo from mysterious erupting star

27.03.2003


In January 2002, a moderately dim star in the constellation Monoceros, the Unicorn, suddenly became 600 000 times more luminous than our Sun. This made it temporarily the brightest star in our Milky Way. The light from this eruption created a unique phenomenon known as a ’light echo’ when it reflected off dust shells around the star.



The brightness of V838 Monocerotis, as astronomers call the star, has long since returned to normal levels. Observations by the NASA/ESA Hubble Space Telescope show remarkable details in the shells of dust lit by the titanic stellar eruption. Astronomers may be able to probe the entire 3D structure of the dust shells surrounding this aging star in much the same way as a doctor does a CAT scan on a patient. The results will appear on 27 March 2003 in Nature.
Astronomers last saw light echoing off dust around stars in our Milky Way in 1936, long before Hubble was able to study this rare sight in the underworld of dusty, black interstellar space.

"As light from the outburst continues to reflect off the dust surrounding the star, we view continuously changing cross-sections of the dust envelope. Hubble’s sharp view is allowing us to do ’astronomical tomography’ of the dust with unprecedented resolution." says the lead observer, astronomer Howard Bond of the Space Telescope Science Institute in the United States.



Bond and his team used Hubble images to calculate that the star is about 20 000 light-years from Earth. It gave off enough energy in a brief flash to illuminate surrounding dust. It is similar to taking a flash picture of the walls of an undiscovered cave. The star presumably ejected the illuminated dust shells in previous outbursts. Some of the light from the latest outburst shines onto the dust and is reflected on to Earth. The path is indirect so the light arrives at Earth months later than light shining directly from the star itself.

V838 Monocerotis’s outburst was somewhat similar to that of a nova, a more common stellar outburst. A typical nova is a normal star that dumps hydrogen onto a compact, white dwarf companion star. The hydrogen builds up until it spontaneously explodes by nuclear fusion - like a titanic hydrogen bomb. The explosion exposes a searing stellar core with a temperature of hundreds of thousands of degrees Celsius. Oddly enough however, V838 Monocerotis did not expel its outer layers. Instead, it grew enormously in size, with its surface temperature dropping to temperatures not much hotter than a light bulb. Growing so large without losing the outer layers is very unusual and completely unlike an ordinary nova explosion.

"We are having a hard time understanding this outburst, which has shown a behavior that is not predicted by present theories of nova outbursts," says Bond. "It may represent a rare combination of stellar properties that we have not seen before." The star is so unique it may represent a transitory stage in a star’s evolution that is rarely seen. The star is a little similar to highly unstable aging stars called eruptive variables, which suddenly and unpredictably increase in brightness.

The circular light-echo feature has now expanded to twice the angular size of Jupiter in the sky. Astronomers expect it to continue expanding as reflected light from farther out in the dust envelope finally arrives at Earth. Bond predicts that the echo will be observable until about 2010.



Lars Lindberg Christensen | alfa
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>