Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble watches light echo from mysterious erupting star

27.03.2003


In January 2002, a moderately dim star in the constellation Monoceros, the Unicorn, suddenly became 600 000 times more luminous than our Sun. This made it temporarily the brightest star in our Milky Way. The light from this eruption created a unique phenomenon known as a ’light echo’ when it reflected off dust shells around the star.



The brightness of V838 Monocerotis, as astronomers call the star, has long since returned to normal levels. Observations by the NASA/ESA Hubble Space Telescope show remarkable details in the shells of dust lit by the titanic stellar eruption. Astronomers may be able to probe the entire 3D structure of the dust shells surrounding this aging star in much the same way as a doctor does a CAT scan on a patient. The results will appear on 27 March 2003 in Nature.
Astronomers last saw light echoing off dust around stars in our Milky Way in 1936, long before Hubble was able to study this rare sight in the underworld of dusty, black interstellar space.

"As light from the outburst continues to reflect off the dust surrounding the star, we view continuously changing cross-sections of the dust envelope. Hubble’s sharp view is allowing us to do ’astronomical tomography’ of the dust with unprecedented resolution." says the lead observer, astronomer Howard Bond of the Space Telescope Science Institute in the United States.



Bond and his team used Hubble images to calculate that the star is about 20 000 light-years from Earth. It gave off enough energy in a brief flash to illuminate surrounding dust. It is similar to taking a flash picture of the walls of an undiscovered cave. The star presumably ejected the illuminated dust shells in previous outbursts. Some of the light from the latest outburst shines onto the dust and is reflected on to Earth. The path is indirect so the light arrives at Earth months later than light shining directly from the star itself.

V838 Monocerotis’s outburst was somewhat similar to that of a nova, a more common stellar outburst. A typical nova is a normal star that dumps hydrogen onto a compact, white dwarf companion star. The hydrogen builds up until it spontaneously explodes by nuclear fusion - like a titanic hydrogen bomb. The explosion exposes a searing stellar core with a temperature of hundreds of thousands of degrees Celsius. Oddly enough however, V838 Monocerotis did not expel its outer layers. Instead, it grew enormously in size, with its surface temperature dropping to temperatures not much hotter than a light bulb. Growing so large without losing the outer layers is very unusual and completely unlike an ordinary nova explosion.

"We are having a hard time understanding this outburst, which has shown a behavior that is not predicted by present theories of nova outbursts," says Bond. "It may represent a rare combination of stellar properties that we have not seen before." The star is so unique it may represent a transitory stage in a star’s evolution that is rarely seen. The star is a little similar to highly unstable aging stars called eruptive variables, which suddenly and unpredictably increase in brightness.

The circular light-echo feature has now expanded to twice the angular size of Jupiter in the sky. Astronomers expect it to continue expanding as reflected light from farther out in the dust envelope finally arrives at Earth. Bond predicts that the echo will be observable until about 2010.



Lars Lindberg Christensen | alfa
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>