Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doomed matter near black hole gets second lease on life

26.03.2003


Supermassive black holes, notorious for ripping apart and swallowing stars, might also help seed interstellar space with the elements necessary for life, such as hydrogen, carbon, oxygen and iron, scientists say.



Using NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton satellite, scientists at Penn State University and the Massachusetts Institute of Technology found evidence of high-speed winds blowing away copious amounts of gas from the cores of two quasar galaxies, which are thought to be powered by black holes.

"The winds we measured imply that as much as a billion suns’ worth of material is blown away over the course of a quasar’s lifetime," said George Chartas of the Penn State Astronomy and Astrophysics Department, who led the observations. The winds might also regulate black hole growth and spur the creation of new stars, according to the science team, which includes Niel Brandt and Gordon Garmire of Penn State and Sarah Gallagher of MIT.


These results are presented today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec. Different from high-speed jets shooting off subatomic particles, the newly identified gusts arise from the disk of matter orbiting the black hole, called the accretion disk, once thought to be a one-way ticket into the black hole.

Black holes are objects so dense that nothing, not even light, can escape their gravitational attraction. But this only applies once matter crosses the theoretical border of a black hole, called the event horizon. Outside the event horizon, the tug of gravity is strong, but matter and light can escape.

Theorists have suggested that a wind could blow away material from its accretion disk and pepper the interstellar region with heavier elements. The wind is created by radiation pressure, analogous to earthly winds created by varying high and low air pressure systems.

Chartas and his colleagues observed two quasars, which are exceedingly distant star-like objects thought to be the bright cores of galaxies fueled by a supermassive black hole. With Chandra, the team observed a quasar called APM 08279+5255; and with the European Space Agency’s XMM-Newton, they observed a quasar named PG1115+080.

Both quasars are billions of light years away from Earth. However, APM 08279+5255 was naturally magnified by a factor of about 100 and PG1115+080 by a factor of about 25 through a process called gravitational lensing. Essentially, their light, while en route to us, was distorted and magnified by the gravity of intervening galaxies acting like telescope lenses.

With the natural boost in magnification, coupled with the X-ray observatories’ abilities, the scientists could ascertain several key properties in the quasar light, such as the speed of the gas that absorbed the light, as well as the material’s proximity to the black hole.

The team found the first observational evidence of a wind component transporting a substantial amount of carbon, oxygen and iron into the interstellar and intergalactic medium. The wind was moving at 40 percent light speed, considerably faster than predicted.

Brandt said the observation may spur new theoretical work about black hole winds and their effect on their environs. For example, Brandt said, "the wind might provide insight to the relationship between black hole mass and the central bulge of its host galaxy."

Chandra, launched in July 1999, is the third in NASA’s Great Observatory series, a sister craft to the Hubble Space Telescope. ESA’s XMM-Newton was launched from French Guiana in December 1999 and carries three advanced X-ray telescopes.

NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian’s Chandra X-ray Center controls science and flight operations from Cambridge, Mass., for the Office of Space Science at NASA Headquarters, Washington.


[ Christopher Wanjek ]

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>