Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne researchers use electric field to manipulate tiny particles

26.03.2003


Intricate patterns formed by granular materials under the influence of electrostatic fields have scientists at the U.S. Department of Energy’s Argonne National Laboratory dreaming of new ways to create smaller structures for nanotechnologies. With a combination of electric fields and fluid mixtures, researchers Igor Aronson, Maksim Sapozhnikov, Yuri Tolmachev and Wai Kwok can cause tiny spheres of bronze and other metals to self-assemble into crystalline patterns, honeycombs, pulsating rings and bizarre two-lobed structures that whirl like tiny propellers. Such self-assembling behavior could be exploited to create the next generation nanostructures or tiny micromechanical devices. Their work has been reported in the Physical Review Letters (Phys. Rev. Lett. 90, 114301, 2003).



The research started about four years ago, when Igor Aronson was studying the surprisingly regular patterns formed when granular materials like sand are vibrated, seeking clues to the dynamics of such substances. "Despite about a thousand years of practical experience, we still don’t completely understand granular materials," Aronson said. "They can display the properties of solids or liquids, and behaviors that defy conventional physics."

Aronson and colleagues investigated the reaction of a very fine granular material in an electrostatic field. They placed a quarter-teaspoon of 100-micron bronze spheres between two transparent sheets coated with conducting material. Under high voltage, each bronze sphere acquires a charge from the bottom plate and is attracted to the upper sheet. The spheres reverse charge when they hit the upper sheet and are repelled back toward the lower sheet. As the process repeats 40 times per second, the bronze particles form a shimmering "gas" between the two plates. Groups of particles, responding to the electric field from the plates and from each other, tend to cluster together and coalesce into large, random groups.


Maksim Sapozhnikov, a postdoctoral researcher working under Aronson’s supervision, then filled the electrostatic cell with various non-conducting fluids, including toluene, octane and others. The results were essentially random until he tried phenotole, a colorless, oily fluid used in medicines and dyes. Then came the surprise - at around 1,000 volts, the particles began to form regular patterns. By varying the voltage, the spacing between the plates and the amount of conductive fluid in the mix, the researchers found they could create a regularly spaced array of dots (crystals), honeycombs and other forms.

The results then were reproduced with other dielectric liquids mixed with small amount of ethanol to control the electrical conductivity of the solution.

"Particles interact with each other and create hydrodynamic forces in the liquid. These interactions create the patterns," Aronson said. "You can actually ’tune’ the patterns by adding impurities to the liquid."

But the patterns aren’t always static. The particles can form rings that grow, absorb other clusters of particles, then burst open. Sometimes madly spinning strange creatures are formed. "They grow, they rotate, they do all kinds of crazy things," Aronson said. "The rotation, especially, is still not understood. The physics are complex, and we only partially understand them."

The ability of some materials to organize themselves into repeating patterns is of special interest to nanotechnologists. Tiny clusters of particles - measured in billionths of a meter, or about 1/500th the width of a human hair - exhibit different properties than their larger bulk counterparts. Argonne researchers have learned that they are more chemically reactive, exhibit new electronic properties and can be used to create materials that are stronger, tougher and more resistant to friction and wear than bulk materials.

Getting nanometer-sized particles to self-assemble into useful structures is one of the field’s most difficult challenges. Self-assembly techniques are usually driven by thermodynamic forces, which dictate the type of complex pattern formation.

"This electrostatic method provides an additional way to control the self-assembly process," Aronson said. "It’s another ’handle’ we can use to manipulate the particles." More information and movies of the particles in motion are online at http://www.msd.anl.gov/groups/sm/granphy/.

The nation’s first national laboratory, Argonne National Laboratory supports basic and applied scientific research across a wide spectrum of disciplines, ranging from high energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is operated by the University of Chicago as part of the U.S. Department of Energy national laboratory system.


###

Donna Jones Pelkie | EurekAlert!
Further information:
http://www.anl.gov/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>