Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gamma-ray burst bonanza

25.03.2003


ESA’s Integral satellite is detecting gamma-ray bursts at a rate of nearly one per day, establishing itself as a key player in the hunt for these enigmatic explosions.



Launched in October 2002, Integral has just captured four bursts in the last four months right in the middle of its field of view. Such precision observations are providing scientists with a remarkable view of gamma-ray bursts, which occur randomly, fade within seconds, and yet shine with the intensity of millions upon millions of Suns.

"We made Integral to study supernovae, black holes, and neutron stars, yet already we see how this versatile satellite can contribute greatly to the field of gamma-ray bursts," says Chris Winkler, Integral Project Scientist.


Gamma-ray bursts are distant explosions of unknown origin. Scientists say that these bursts signal the birth of a brand new black hole, either through the death of a massive star or through the merger of two neutron stars or black holes. The bursts fade within seconds, never to appear in the same place twice, so scientists have been hard-pressed to study the bursts in detail.

Integral, with its four main instruments, helps locate bursts for follow-up study in two primary ways. The anti-coincidence system of one of its instruments (which usually helps eliminate background noise) can detect a gamma-ray burst almost anywhere in the sky and does so about every day.

Integral shares this information with other gamma-ray detectors that comprise the Interplanetary Network. Together, these simple detectors, which are located on spacecraft across the Solar System, pinpoint the location of a burst through triangulation. The process takes a little time, but within a few days, scientists have enough information to find the gamma-ray burst afterglow and study it.

About once a month, however, a gamma-ray burst goes off within Integral’s field of view. Integral has detected four bursts this way dead on. The most recent burst (GRB 030227) triggered very many follow-up observations. Integral can provide a unique perspective for those gamma-ray bursts caught directly in its field of view because it can view the bursts rapidly with four instruments. These instruments are an imager, a spectrometer, an X-ray monitor, and an optical camera. All of them observe the same region of the sky simultaneously.

The Integral team expects the satellite’s capability for detecting, locating, and relaying information about gamma-ray bursts will improve markedly in the coming months.

Integral team members discuss their gamma-ray burst findings so far in a press conference on 24 March 2003 at a meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec, Canada.

Monica Talevi | alfa
Further information:
http://www.esa.int/export/esaCP/SEMIVX8YFDD_FeatureWeek_0.html

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>