Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gamma-ray burst bonanza

25.03.2003


ESA’s Integral satellite is detecting gamma-ray bursts at a rate of nearly one per day, establishing itself as a key player in the hunt for these enigmatic explosions.



Launched in October 2002, Integral has just captured four bursts in the last four months right in the middle of its field of view. Such precision observations are providing scientists with a remarkable view of gamma-ray bursts, which occur randomly, fade within seconds, and yet shine with the intensity of millions upon millions of Suns.

"We made Integral to study supernovae, black holes, and neutron stars, yet already we see how this versatile satellite can contribute greatly to the field of gamma-ray bursts," says Chris Winkler, Integral Project Scientist.


Gamma-ray bursts are distant explosions of unknown origin. Scientists say that these bursts signal the birth of a brand new black hole, either through the death of a massive star or through the merger of two neutron stars or black holes. The bursts fade within seconds, never to appear in the same place twice, so scientists have been hard-pressed to study the bursts in detail.

Integral, with its four main instruments, helps locate bursts for follow-up study in two primary ways. The anti-coincidence system of one of its instruments (which usually helps eliminate background noise) can detect a gamma-ray burst almost anywhere in the sky and does so about every day.

Integral shares this information with other gamma-ray detectors that comprise the Interplanetary Network. Together, these simple detectors, which are located on spacecraft across the Solar System, pinpoint the location of a burst through triangulation. The process takes a little time, but within a few days, scientists have enough information to find the gamma-ray burst afterglow and study it.

About once a month, however, a gamma-ray burst goes off within Integral’s field of view. Integral has detected four bursts this way dead on. The most recent burst (GRB 030227) triggered very many follow-up observations. Integral can provide a unique perspective for those gamma-ray bursts caught directly in its field of view because it can view the bursts rapidly with four instruments. These instruments are an imager, a spectrometer, an X-ray monitor, and an optical camera. All of them observe the same region of the sky simultaneously.

The Integral team expects the satellite’s capability for detecting, locating, and relaying information about gamma-ray bursts will improve markedly in the coming months.

Integral team members discuss their gamma-ray burst findings so far in a press conference on 24 March 2003 at a meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec, Canada.

Monica Talevi | alfa
Further information:
http://www.esa.int/export/esaCP/SEMIVX8YFDD_FeatureWeek_0.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>