Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pulsar Bursts Coming From Beachball-Sized Structures


In a major breakthrough for understanding what one of them calls "the most exotic environment in the Universe," a team of astronomers has discovered that powerful radio bursts in pulsars are generated by structures as small as a beach ball.

VLA Image of Crab Nebula

Diagram of a Pulsar

"These are by far the smallest objects ever detected outside our solar system," said Tim Hankins, leader of the research team, which studied the pulsar at the center of the Crab Nebula, more than 6,000 light-years from Earth. "The small size of these regions is inconsistent with all but one proposed theory for how the radio emission is generated," he added.

The other members of the team are Jeff Kern, James Weatherall and Jean Eilek. Hankins was a visiting scientist at Arecibo Observatory in Puerto Rico at the time the pulsar observations were made. He and Eilek are professors at the New Mexico Institute of Mining and Technology (New Mexico Tech) in Socorro, NM. Kern is a graduate student at NM Tech and a predoctoral fellow at the National Radio Astronomy Observatory (NRAO) in Socorro. Weatherall is an adjunct professor at NM Tech, currently working at the Federal Aviation Administration. The astronomers reported their discovery in the March 13 edition of the scientific journal Nature.

Pulsars are superdense neutron stars, the remnants of massive stars that exploded as supernovae. Pulsars emit powerful beams of radio waves and light. As the neutron star spins, the beam sweeps through space like the beam of a lighthouse. When such a beam sweeps across the Earth, astronomers see a pulse from the pulsar. The Crab pulsar spins some 33 times every second.

British radio astronomers discovered pulsars in 1967, one receiving the Nobel Prize for the discovery. In the years since, the method by which pulsars produce their powerful beams of electromagnetic radiation has remained a mystery.

With the help of engineers at the NRAO, Hankins and his team designed and built specialized electronic equipment that allowed them to study the pulsar’s radio pulses on extremely small time scales. They took this equipment to the National Science Foundation’s giant, 1,000-foot-diameter radio telescope at Arecibo. With their equipment, they analyzed the Crab pulsar’s superstrong "giant" pulses, breaking them down into tiny time segments.

The researchers discovered that some of the "giant" pulses contain subpulses that last no longer than two nanoseconds. That means, they say, that the regions in which these subpulses are generated can be no larger than about two feet across -- the distance that light could travel in two nanoseconds.

This fact, the researchers say, is critically important to understanding how the powerful radio emission is generated.

A pulsar’s magnetosphere -- the region above the neutron star’s magnetic poles where the radio waves are generated -- is "the most exotic environment in the Universe," said Kern. In this environment, matter exists as a plasma, in which electrically charged particles are free to respond to the very strong electric and magnetic fields in the star’s atmosphere.

The very short subpulses the researchers detected could only be generated, they say, by a strange process in which density waves in the plasma interact with their own electrical field, becoming progressively denser until they reach a point at which they "collapse explosively" into superstrong bursts of radio waves.

"None of the other proposed mechanisms can produce such short pulses," Eilek said. "The ability to examine these pulses on such short time scales has given us a new window through which to study pulsar radio emission," she added.

The Crab pulsar is one of only three pulsars known to emit superstrong "giant" pulses. "Giant" pulses occur occasionally among the steady but much weaker "normal" pulses coming from the neutron star.

Some of the brief subpulses within the Crab’s "giant" pulses are second only to the Sun in their radio brightness in the sky. Although the mechanism that converts the plasma energy to radio waves in the Crab’s "giant" pulses may be unique to the Crab pulsar, it is feasible that all radio pulsars may operate the same way. The research team now is observing signals from other pulsars to see if they are fundamentally different. The subpulses in the Crab’s "giant" pulses are so strong that the team’s equipment could detect them even if they originated not in our own Milky Way Galaxy, but in a nearby galaxy.

The Crab Nebula is a cloud of glowing debris from a star that was seen to explode on July 4, 1054. Chinese astronomers noted the bright new star that outshone the planet Venus and was visible in daylight for 23 days. A rock carving at New Mexico’s Chaco Canyon probably indicates that Native American skywatchers also noted the bright intruder in the sky.

The nebula was discovered by John Bevis in 1731 and independently rediscovered by French astronomer Charles Messier on August 28, 1758. Messier made the Crab Nebula (named because of its crab-like shape) the first object in his famous catalog of non-stellar objects, a catalog widely popular among amateur astronomers with small telescopes.

In 1948, radio emission was discovered coming from the Crab Nebula. In 1968, astronomers at Arecibo Observatory discovered the pulsar in the heart of the nebula. The following year, astronomers at Arizona’s Steward Observatory discovered visible-light pulses also coming from the pulsar, making this the first pulsar found to emit visible light in addition to radio waves.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation..

David Brand | Cornell University News Service
Further information:

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>