Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laboratory astrophysicist discovers new source of high-energy neutrinos


A Lawrence Livermore National Laboratory astrophysicist, working with an international group of researchers, has discovered that high-energy neutrinos -- particles that rarely interact with other matter -- are produced in the accretion discs of neutron stars in amounts significant enough to be detected by the next-generation of neutrino telescopes.

Using computer simulations, the team of scientists, which includes Lab astrophysicist Diego Torres, has shown that magnetized, accreting neutron stars can be a significant new source for high-energy neutrinos. Neutrinos are thought to be the final outcome of a chain of reactions initiated by proton (hydrogen atoms devoid of electrons) collisions between matter sitting in the accretion disc and particles accelerated in the pulsar magnetosphere.

A neutron star is a compact object, one possible end-point of the evolution of a massive star. They are often in binary star systems. In such systems, the stars’ orbit periodically brings them closer together to a point where the strong gravity from the neutron star can steal gas from the companion. The transfer of gas onto the neutron star (accretion) is a turbulent event that shines brightly.

Torres and his colleagues observed that during the 110-day orbital period of A0545+26 -- a nearby and well-studied X-ray binary -- high-energy neutrinos can be produced during approximately 50 days of that cycle in fluxes that are above and beyond the background noise of neutrinos expected at Earth. A0535+26 would then appear as a periodic source of high-energy neutrinos, Torres said.

"This is the first time we’ve shown that accreting X-ray binaries can be a periodic neutrino source that can be detected by the next-generation telescopes," said Torres, who works at the Lab’s Institute of Geophysics and Planetary Physics

Torres along with scientists from Northeastern University, Instituto Argentino de Radioastronomia and the Max Planck Institut fur Kernphysik will present their research in the upcoming May 20 edition of the Astrophysical Journal.

Neutron stars have long been viewed as physics laboratories in space because they provide insights into the nature of matter and energy. Torres and his colleagues believe that astronomers will be able to use IceCube -- a one-cubic-kilometer international high-energy neutrino observatory being built and installed in the deep ice below the South Pole -- to detect the neutron star neutrinos.

"IceCube could show how an accretion disc in A0545+26 periodically forms and disappears as the two stars orbit each other," Torres said. "The neutrinos from this disc would overwhelm those from any other neutron star system we know."

The team suggests that studying the A0545+26 disc is just the beginning of multiparticle astronomy, where photons in all wavelengths and neutrinos are detected at the same time.

The upcoming journal article is now available at For images of IceCube, go to

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>