Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laboratory astrophysicist discovers new source of high-energy neutrinos

10.03.2003


A Lawrence Livermore National Laboratory astrophysicist, working with an international group of researchers, has discovered that high-energy neutrinos -- particles that rarely interact with other matter -- are produced in the accretion discs of neutron stars in amounts significant enough to be detected by the next-generation of neutrino telescopes.



Using computer simulations, the team of scientists, which includes Lab astrophysicist Diego Torres, has shown that magnetized, accreting neutron stars can be a significant new source for high-energy neutrinos. Neutrinos are thought to be the final outcome of a chain of reactions initiated by proton (hydrogen atoms devoid of electrons) collisions between matter sitting in the accretion disc and particles accelerated in the pulsar magnetosphere.

A neutron star is a compact object, one possible end-point of the evolution of a massive star. They are often in binary star systems. In such systems, the stars’ orbit periodically brings them closer together to a point where the strong gravity from the neutron star can steal gas from the companion. The transfer of gas onto the neutron star (accretion) is a turbulent event that shines brightly.


Torres and his colleagues observed that during the 110-day orbital period of A0545+26 -- a nearby and well-studied X-ray binary -- high-energy neutrinos can be produced during approximately 50 days of that cycle in fluxes that are above and beyond the background noise of neutrinos expected at Earth. A0535+26 would then appear as a periodic source of high-energy neutrinos, Torres said.

"This is the first time we’ve shown that accreting X-ray binaries can be a periodic neutrino source that can be detected by the next-generation telescopes," said Torres, who works at the Lab’s Institute of Geophysics and Planetary Physics

Torres along with scientists from Northeastern University, Instituto Argentino de Radioastronomia and the Max Planck Institut fur Kernphysik will present their research in the upcoming May 20 edition of the Astrophysical Journal.

Neutron stars have long been viewed as physics laboratories in space because they provide insights into the nature of matter and energy. Torres and his colleagues believe that astronomers will be able to use IceCube -- a one-cubic-kilometer international high-energy neutrino observatory being built and installed in the deep ice below the South Pole -- to detect the neutron star neutrinos.

"IceCube could show how an accretion disc in A0545+26 periodically forms and disappears as the two stars orbit each other," Torres said. "The neutrinos from this disc would overwhelm those from any other neutron star system we know."

The team suggests that studying the A0545+26 disc is just the beginning of multiparticle astronomy, where photons in all wavelengths and neutrinos are detected at the same time.


The upcoming journal article is now available at http://mentor.lanl.gov/abs/hep-ph/0211231. For images of IceCube, go to http://icecube.wisc.edu.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov/
http://mentor.lanl.gov/abs/hep-ph/0211231
http://icecube.wisc.edu

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>