Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pushing back the frontiers of the universe to the era of the first stars

10.03.2003


UK astronomers Elizabeth Stanway, Andrew Bunker and Richard McMahon at the Institute of Astronomy, University of Cambridge, England, have used three of the most powerful telescopes in existence to identify some of the farthest galaxies yet seen. But at the same time, they have encountered a cosmic conundrum: it looks as if there were fewer galaxies forming stars at this early stage in the history of the Universe than in the more recent past. Their results, which will be published in the Monthly Notices of the Royal Astronomical Society, show for the first time, that astronomers may be probing back to the era when the first stars and galaxies were forming.



Stanway, Bunker and McMahon used the unique power of the Hubble Space Telescope and analysed publicly-available images taken in the direction of the southern hemisphere constellation of Fornax (the Oven) with the new Advanced Camera for Surveys as part of the ’Great Observatory Origins Deep Survey’ (GOODS) project. They identified half a dozen objects likely to be galaxies 95 per cent of the way across the observable Universe. The redshifts of these galaxies are about 6 and they are so far away that radiation from them has taken about 13 billion years to reach us. They existed when the Universe was less than a billion years old and seven billion years before the Earth and Sun formed. Intervening gas clouds absorbed visible light from them long before it reached Earth but their infrared light can be detected - and it is their infrared ’colours’ which lead the researchers to believe that they lie at such immense distances.

They also used infrared images taken with one of the 8-metre telescopes forming the Very Large Telescope (VLT) at the European Southern Observatory (ESO) in Chile to study these galaxies. "The ESO pictures allowed us to distinguish very distant galaxies at the edge of the observable Universe from objects nearby," said graduate student Elizabeth Stanway, who has identified the galaxies as part of her research for a doctorate in astrophysics at Cambridge.


Having drawn up a list of objects that could be remote galaxies, the astronomers then turned to one of two Keck telescopes, which are the largest in the world and are at the top of the 14000ft mountain of Mauna Kea in Hawaii. Working with California astronomers Professor Richard Ellis (Caltech) and Dr Patrick McCarthy (Carnegie Observatories) they took a spectrum of one of them. They saw the signature of hydrogen gas glowing as it is illuminated by hot, newly-born stars, and measured the redshift to be 5.78. "This galaxy is in the process of giving birth to stars - each year it converts a mass of gas more than 30 times that of our Sun into new stars", according to research astronomer Dr. Andrew Bunker. These additional results have recently been submitted to the Monthly Notices of the Royal Astronomical Society.

"Using the Keck, was very important as it showed that this population of objects discovered by the Hubble Space Telescope really is incredibly distant", said Andrew Bunker, who was part of the team which did the observing in Hawaii. "The galaxy we have proved to be very distant is only 1000 light years across. This is very small compared to our own galaxy, the Milky Way, which is 100 times larger" added Elizabeth Stanway.

But the Cambridge team have also found a cosmic puzzle: on the basis of their sample, they can calculate how may galaxies there are involved in the rapid formation of stars in the very distant universe (redshift 6). They have compared the answer with previous work looking at nearer galaxies, with redshifts around 4. It seems that there are fewer of these galaxies early in the history of the Universe, compared to more recent times.

Theoretical predictions for the star formation history of the universe are highly uncertain, which is why this observational work is essential. "It could be that we are seeing some of the first galaxies to be born", said Richard McMahon, "The light from these first stars to ignite could have ended the Dark Age of the Universe as the galaxies ’turn on’, and might have caused the gas between the galaxies to be blasted by starlight - the ’reionization’ which has recently been detected in the cosmic microwave background by the WMAP satellite". The results of the Cambridge group combined with the recent results from WMAP satellite complement each other and show that the Dark Age ended sometime between 200 and 1000 million years after the Big Bang with the formation of the first stars.

This team of astronomers are currently building a new instrument in Cambridge called ’DAZLE’, which will probe even earlier in the history of the Universe and shed new light on the ’Dark Ages’.

Elizabeth Stanway | alfa
Further information:
http://www.ast.cam.ac.uk/~bunker/internal/CambridgeGOODS/

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>