Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pushing back the frontiers of the universe to the era of the first stars

10.03.2003


UK astronomers Elizabeth Stanway, Andrew Bunker and Richard McMahon at the Institute of Astronomy, University of Cambridge, England, have used three of the most powerful telescopes in existence to identify some of the farthest galaxies yet seen. But at the same time, they have encountered a cosmic conundrum: it looks as if there were fewer galaxies forming stars at this early stage in the history of the Universe than in the more recent past. Their results, which will be published in the Monthly Notices of the Royal Astronomical Society, show for the first time, that astronomers may be probing back to the era when the first stars and galaxies were forming.



Stanway, Bunker and McMahon used the unique power of the Hubble Space Telescope and analysed publicly-available images taken in the direction of the southern hemisphere constellation of Fornax (the Oven) with the new Advanced Camera for Surveys as part of the ’Great Observatory Origins Deep Survey’ (GOODS) project. They identified half a dozen objects likely to be galaxies 95 per cent of the way across the observable Universe. The redshifts of these galaxies are about 6 and they are so far away that radiation from them has taken about 13 billion years to reach us. They existed when the Universe was less than a billion years old and seven billion years before the Earth and Sun formed. Intervening gas clouds absorbed visible light from them long before it reached Earth but their infrared light can be detected - and it is their infrared ’colours’ which lead the researchers to believe that they lie at such immense distances.

They also used infrared images taken with one of the 8-metre telescopes forming the Very Large Telescope (VLT) at the European Southern Observatory (ESO) in Chile to study these galaxies. "The ESO pictures allowed us to distinguish very distant galaxies at the edge of the observable Universe from objects nearby," said graduate student Elizabeth Stanway, who has identified the galaxies as part of her research for a doctorate in astrophysics at Cambridge.


Having drawn up a list of objects that could be remote galaxies, the astronomers then turned to one of two Keck telescopes, which are the largest in the world and are at the top of the 14000ft mountain of Mauna Kea in Hawaii. Working with California astronomers Professor Richard Ellis (Caltech) and Dr Patrick McCarthy (Carnegie Observatories) they took a spectrum of one of them. They saw the signature of hydrogen gas glowing as it is illuminated by hot, newly-born stars, and measured the redshift to be 5.78. "This galaxy is in the process of giving birth to stars - each year it converts a mass of gas more than 30 times that of our Sun into new stars", according to research astronomer Dr. Andrew Bunker. These additional results have recently been submitted to the Monthly Notices of the Royal Astronomical Society.

"Using the Keck, was very important as it showed that this population of objects discovered by the Hubble Space Telescope really is incredibly distant", said Andrew Bunker, who was part of the team which did the observing in Hawaii. "The galaxy we have proved to be very distant is only 1000 light years across. This is very small compared to our own galaxy, the Milky Way, which is 100 times larger" added Elizabeth Stanway.

But the Cambridge team have also found a cosmic puzzle: on the basis of their sample, they can calculate how may galaxies there are involved in the rapid formation of stars in the very distant universe (redshift 6). They have compared the answer with previous work looking at nearer galaxies, with redshifts around 4. It seems that there are fewer of these galaxies early in the history of the Universe, compared to more recent times.

Theoretical predictions for the star formation history of the universe are highly uncertain, which is why this observational work is essential. "It could be that we are seeing some of the first galaxies to be born", said Richard McMahon, "The light from these first stars to ignite could have ended the Dark Age of the Universe as the galaxies ’turn on’, and might have caused the gas between the galaxies to be blasted by starlight - the ’reionization’ which has recently been detected in the cosmic microwave background by the WMAP satellite". The results of the Cambridge group combined with the recent results from WMAP satellite complement each other and show that the Dark Age ended sometime between 200 and 1000 million years after the Big Bang with the formation of the first stars.

This team of astronomers are currently building a new instrument in Cambridge called ’DAZLE’, which will probe even earlier in the history of the Universe and shed new light on the ’Dark Ages’.

Elizabeth Stanway | alfa
Further information:
http://www.ast.cam.ac.uk/~bunker/internal/CambridgeGOODS/

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>