Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroid Hunting

07.03.2003


A lot of attention has been paid in recent years to the asteroid threat issue. The International Asteroid Patrol has been set up to monitor the flight of potentially dangerous celestial rocks in visual diapason. However, the accuracy of optical methods for determining the trajectory leaves much to be desired. That accounts for inaccuracy of numerous forecasts predicting the date when the space "killer" is to collide with the Earth.



The scientists of the Radio-Astronomical Institute (National Academy of Sciences of Ukraine) have suggested that RT-70 radio-telescope (located in the town of Yevpatoria) should be used to determine and refine the coordinates of selected asteroids. The radio-telescope is equipped with a special guidance system which permits to point the telescope at any spot in the sky. The specificity of RT-70 is its ability to perform two functions: to send radio signals into space and to receive them. There are only two of such universal telescopes in the world.

The Kharkov radio-astronomers have carried out the first radio-location session. The RT-70 telescope antenna radiated radio-frequency pulses in the direction of 1998 WT 24 asteroid, and the echo pulse was synchronously received by Russian and foreign radio-astronomers at several antennas simultaneously. Application of the radio-interferometry method, i.e. coordinated effort of several radio-telescopes located at a distance from each other, allowed to determine the celestial body coordinates at that point with the highest possible precision, and, consequently, to calculate its trajectory. A successful experiment of this type, which took place for the first time in the world, proved that the radio-location method could discover an asteroid, calculate peculiarities of its orbit and surface when it was at a large distance from the Earth.


This method is also applicable for discovering the space garbage. Thirty years of cosmonautics have contaminated the near-earth space with a lot of fragments of worn out space vehicles. Of course, as time passes, part of the debris falls down to the Earth and gets burnt in its atmosphere, but the remainder (dozens of thousands of fragments varying in dimensions) stay firmly in the geostationary orbits and can threaten spaceships. To efficiently track the movement of these fragments around the Earth and to avoid the collision when planning new launches and landings, a special catalogues were made and are continuously filled up with new and more precise data.

The study primarily involves optical devices and laser location. Experiments with RT-70 have proved that radio-location is able to help in compiling such catalogues. The Kharkov specialists sent signals from RT-70 radio-telescope in the direction of one of the fragments in the geostationary orbit, the signal reflection being steadily accepted by the English, French, Italian, Poles, etc., i.e. all the countries that have appropriate equipment. This allowed to determine the fragments dimensions, speed of rotation, orbit and other parameters necessary for the catalogue.

The research also involved the specialists from the Astro-Cosmic Center (Physical Institute of Academy of Sciences), Institute of Radio Electronics (Russian Academy of Sciences) and Institute of Applied Astronomy (Russian Academy of Sciences).

Valentina Gatash | alfa
Further information:
http://www.informnauka.ru/eng/2003/2003-03-07-02_332_e.htm

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>