Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroid Hunting

07.03.2003


A lot of attention has been paid in recent years to the asteroid threat issue. The International Asteroid Patrol has been set up to monitor the flight of potentially dangerous celestial rocks in visual diapason. However, the accuracy of optical methods for determining the trajectory leaves much to be desired. That accounts for inaccuracy of numerous forecasts predicting the date when the space "killer" is to collide with the Earth.



The scientists of the Radio-Astronomical Institute (National Academy of Sciences of Ukraine) have suggested that RT-70 radio-telescope (located in the town of Yevpatoria) should be used to determine and refine the coordinates of selected asteroids. The radio-telescope is equipped with a special guidance system which permits to point the telescope at any spot in the sky. The specificity of RT-70 is its ability to perform two functions: to send radio signals into space and to receive them. There are only two of such universal telescopes in the world.

The Kharkov radio-astronomers have carried out the first radio-location session. The RT-70 telescope antenna radiated radio-frequency pulses in the direction of 1998 WT 24 asteroid, and the echo pulse was synchronously received by Russian and foreign radio-astronomers at several antennas simultaneously. Application of the radio-interferometry method, i.e. coordinated effort of several radio-telescopes located at a distance from each other, allowed to determine the celestial body coordinates at that point with the highest possible precision, and, consequently, to calculate its trajectory. A successful experiment of this type, which took place for the first time in the world, proved that the radio-location method could discover an asteroid, calculate peculiarities of its orbit and surface when it was at a large distance from the Earth.


This method is also applicable for discovering the space garbage. Thirty years of cosmonautics have contaminated the near-earth space with a lot of fragments of worn out space vehicles. Of course, as time passes, part of the debris falls down to the Earth and gets burnt in its atmosphere, but the remainder (dozens of thousands of fragments varying in dimensions) stay firmly in the geostationary orbits and can threaten spaceships. To efficiently track the movement of these fragments around the Earth and to avoid the collision when planning new launches and landings, a special catalogues were made and are continuously filled up with new and more precise data.

The study primarily involves optical devices and laser location. Experiments with RT-70 have proved that radio-location is able to help in compiling such catalogues. The Kharkov specialists sent signals from RT-70 radio-telescope in the direction of one of the fragments in the geostationary orbit, the signal reflection being steadily accepted by the English, French, Italian, Poles, etc., i.e. all the countries that have appropriate equipment. This allowed to determine the fragments dimensions, speed of rotation, orbit and other parameters necessary for the catalogue.

The research also involved the specialists from the Astro-Cosmic Center (Physical Institute of Academy of Sciences), Institute of Radio Electronics (Russian Academy of Sciences) and Institute of Applied Astronomy (Russian Academy of Sciences).

Valentina Gatash | alfa
Further information:
http://www.informnauka.ru/eng/2003/2003-03-07-02_332_e.htm

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>