Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroid Hunting

07.03.2003


A lot of attention has been paid in recent years to the asteroid threat issue. The International Asteroid Patrol has been set up to monitor the flight of potentially dangerous celestial rocks in visual diapason. However, the accuracy of optical methods for determining the trajectory leaves much to be desired. That accounts for inaccuracy of numerous forecasts predicting the date when the space "killer" is to collide with the Earth.



The scientists of the Radio-Astronomical Institute (National Academy of Sciences of Ukraine) have suggested that RT-70 radio-telescope (located in the town of Yevpatoria) should be used to determine and refine the coordinates of selected asteroids. The radio-telescope is equipped with a special guidance system which permits to point the telescope at any spot in the sky. The specificity of RT-70 is its ability to perform two functions: to send radio signals into space and to receive them. There are only two of such universal telescopes in the world.

The Kharkov radio-astronomers have carried out the first radio-location session. The RT-70 telescope antenna radiated radio-frequency pulses in the direction of 1998 WT 24 asteroid, and the echo pulse was synchronously received by Russian and foreign radio-astronomers at several antennas simultaneously. Application of the radio-interferometry method, i.e. coordinated effort of several radio-telescopes located at a distance from each other, allowed to determine the celestial body coordinates at that point with the highest possible precision, and, consequently, to calculate its trajectory. A successful experiment of this type, which took place for the first time in the world, proved that the radio-location method could discover an asteroid, calculate peculiarities of its orbit and surface when it was at a large distance from the Earth.


This method is also applicable for discovering the space garbage. Thirty years of cosmonautics have contaminated the near-earth space with a lot of fragments of worn out space vehicles. Of course, as time passes, part of the debris falls down to the Earth and gets burnt in its atmosphere, but the remainder (dozens of thousands of fragments varying in dimensions) stay firmly in the geostationary orbits and can threaten spaceships. To efficiently track the movement of these fragments around the Earth and to avoid the collision when planning new launches and landings, a special catalogues were made and are continuously filled up with new and more precise data.

The study primarily involves optical devices and laser location. Experiments with RT-70 have proved that radio-location is able to help in compiling such catalogues. The Kharkov specialists sent signals from RT-70 radio-telescope in the direction of one of the fragments in the geostationary orbit, the signal reflection being steadily accepted by the English, French, Italian, Poles, etc., i.e. all the countries that have appropriate equipment. This allowed to determine the fragments dimensions, speed of rotation, orbit and other parameters necessary for the catalogue.

The research also involved the specialists from the Astro-Cosmic Center (Physical Institute of Academy of Sciences), Institute of Radio Electronics (Russian Academy of Sciences) and Institute of Applied Astronomy (Russian Academy of Sciences).

Valentina Gatash | alfa
Further information:
http://www.informnauka.ru/eng/2003/2003-03-07-02_332_e.htm

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>