Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins Applied Physics Lab Researchers Discover Massive Gas Cloud Around Jupiter

28.02.2003
p>
Using a sensitive new imaging instrument on NASA’s Cassini spacecraft, researchers at The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., have discovered a large and surprisingly dense gas cloud sharing an orbit with Jupiter’s icy moon Europa.


Image of Jupiter’s space environment, or magnetosphere
Credit: NASA/Jet Propulsion Laboratory/Johns Hopkins University Applied Physics Laboratory


Cut-away schematic of Jupiter’s space environment showing magnetically trapped radiation ions (in red), the neutral gas torus of the volcanic moon Io (green) and the newly discovered neutral gas torus of the moon Europa (blue). The white lines represent magnetic field lines. Energetic neutral atoms (ENAs) are emitted from the Europa torus regions because of the interaction between the trapped ions and the neutral gases.
Credit: NASA/Jet Propulsion Lab/Johns Hopkins University Applied Physics Laboratory



Stretching millions of miles around Jupiter, the donut-shaped cloud, known as a "torus," is believed to result from the uncommonly severe bombardment of ion radiation that Jupiter sends toward Europa. That radiation damages Europa’s surface, kicking up and pulling apart water-ice molecules and dispersing them along Europa’s orbit into a neutral-gas torus with a mass of about 60,000 tons.

The cloud’s mass indicates that the intense radiation Europa faces has more severe consequences than scientists thought, says Dr. Barry Mauk, head of the APL research team whose findings appear in the Feb. 27 issue of the journal Nature. The mass also shows that Europa, in an orbit some 416,000 miles (671,000 kilometers) from Jupiter, wields considerable influence on the magnetic configuration around the giant planet.


“Surprisingly, Europa’s gas cloud compares to that generated by the volcanically active satellite Io,” says Mauk. “But where Io’s volcanoes are constantly spewing materials — mostly sulfur and oxygen — Europa is a comparatively quiet moon, and the gas we see is a direct consequence of its icy surface being bombarded so intensely.

"By acting as both a source and a sink of charged radiation particles, the dense gas torus gives Europa much greater influence than was previously thought on the structure of, and energy flow within, Jupiter’s huge space environment, its magnetosphere," he says.

The Applied Physics Lab team studied images of Jupiter taken in late 2000 and early 2001 with the APL-developed Ion and Neutral Camera on Cassini, now in route to Saturn. Mauk says this is the first substantial discovery made at an extraterrestrial planet using an innovative technique known as energetic neutral atom (ENA) imaging.

“Planetary magnetospheres glow with energetic neutral atoms, much like a red-hot piece of iron glows with photons of light, and such neutral-atom glows can be remotely imaged,” Mauk says. “To this point, no instrument has imaged that activity beyond Earth’s magnetosphere. ENA imaging makes visible the three-dimensional structure of planetary space environments, which, until recently, were invisible to remote imaging techniques.”

Research team members at APL and co-authors on the Nature paper, “Energetic neutral atoms from a trans-Europa gas torus at Jupiter,” include Dr. Donald Mitchell, Dr. Stamatios Krimigis, Dr. Edmond Roelof and Dr. Christopher Paranicas. Krimigis, head of the Space Department at APL, is principal investigator for Cassini’s Magnetospheric Imaging Instrument, which includes the Ion and Neutral Camera.

The APL-built Magnetospheric Imaging Instrument is one of 12 science instruments on the main spacecraft and one of six instruments designed to investigate the space environments around Saturn and its moons. Cassini will begin orbiting Saturn on July 1, 2004, and release its piggybacked Huygens probe about six months later for descent through the thick atmosphere of the moon Titan. Cassini-Huygens is a cooperative mission of NASA, the European Space Agency and the Italian Space Agency. NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the mission for NASA’s Office of Space Science, Washington, D.C.

Michael Buckley | EurekAlert!
Further information:
http://www.jhu.edu/
http://saturn.jpl.nasa.gov
http://sd-www.jhuapl.edu/CASSINI/

More articles from Physics and Astronomy:

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

nachricht Taming 'wild' electrons in graphene
23.10.2017 | Rutgers University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>