Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins Applied Physics Lab Researchers Discover Massive Gas Cloud Around Jupiter

28.02.2003
p>
Using a sensitive new imaging instrument on NASA’s Cassini spacecraft, researchers at The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., have discovered a large and surprisingly dense gas cloud sharing an orbit with Jupiter’s icy moon Europa.


Image of Jupiter’s space environment, or magnetosphere
Credit: NASA/Jet Propulsion Laboratory/Johns Hopkins University Applied Physics Laboratory


Cut-away schematic of Jupiter’s space environment showing magnetically trapped radiation ions (in red), the neutral gas torus of the volcanic moon Io (green) and the newly discovered neutral gas torus of the moon Europa (blue). The white lines represent magnetic field lines. Energetic neutral atoms (ENAs) are emitted from the Europa torus regions because of the interaction between the trapped ions and the neutral gases.
Credit: NASA/Jet Propulsion Lab/Johns Hopkins University Applied Physics Laboratory



Stretching millions of miles around Jupiter, the donut-shaped cloud, known as a "torus," is believed to result from the uncommonly severe bombardment of ion radiation that Jupiter sends toward Europa. That radiation damages Europa’s surface, kicking up and pulling apart water-ice molecules and dispersing them along Europa’s orbit into a neutral-gas torus with a mass of about 60,000 tons.

The cloud’s mass indicates that the intense radiation Europa faces has more severe consequences than scientists thought, says Dr. Barry Mauk, head of the APL research team whose findings appear in the Feb. 27 issue of the journal Nature. The mass also shows that Europa, in an orbit some 416,000 miles (671,000 kilometers) from Jupiter, wields considerable influence on the magnetic configuration around the giant planet.


“Surprisingly, Europa’s gas cloud compares to that generated by the volcanically active satellite Io,” says Mauk. “But where Io’s volcanoes are constantly spewing materials — mostly sulfur and oxygen — Europa is a comparatively quiet moon, and the gas we see is a direct consequence of its icy surface being bombarded so intensely.

"By acting as both a source and a sink of charged radiation particles, the dense gas torus gives Europa much greater influence than was previously thought on the structure of, and energy flow within, Jupiter’s huge space environment, its magnetosphere," he says.

The Applied Physics Lab team studied images of Jupiter taken in late 2000 and early 2001 with the APL-developed Ion and Neutral Camera on Cassini, now in route to Saturn. Mauk says this is the first substantial discovery made at an extraterrestrial planet using an innovative technique known as energetic neutral atom (ENA) imaging.

“Planetary magnetospheres glow with energetic neutral atoms, much like a red-hot piece of iron glows with photons of light, and such neutral-atom glows can be remotely imaged,” Mauk says. “To this point, no instrument has imaged that activity beyond Earth’s magnetosphere. ENA imaging makes visible the three-dimensional structure of planetary space environments, which, until recently, were invisible to remote imaging techniques.”

Research team members at APL and co-authors on the Nature paper, “Energetic neutral atoms from a trans-Europa gas torus at Jupiter,” include Dr. Donald Mitchell, Dr. Stamatios Krimigis, Dr. Edmond Roelof and Dr. Christopher Paranicas. Krimigis, head of the Space Department at APL, is principal investigator for Cassini’s Magnetospheric Imaging Instrument, which includes the Ion and Neutral Camera.

The APL-built Magnetospheric Imaging Instrument is one of 12 science instruments on the main spacecraft and one of six instruments designed to investigate the space environments around Saturn and its moons. Cassini will begin orbiting Saturn on July 1, 2004, and release its piggybacked Huygens probe about six months later for descent through the thick atmosphere of the moon Titan. Cassini-Huygens is a cooperative mission of NASA, the European Space Agency and the Italian Space Agency. NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the mission for NASA’s Office of Space Science, Washington, D.C.

Michael Buckley | EurekAlert!
Further information:
http://www.jhu.edu/
http://saturn.jpl.nasa.gov
http://sd-www.jhuapl.edu/CASSINI/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>