Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M Physics Professor Who Invented ’Quantum Afterburner’ Revs Up Perfect Engine

27.02.2003


Marlan Scully, the Texas A&M University professor who applied quantum physics to the automotive engine and came up with a design that emits laser beams instead of exhaust, has been tinkering under the hood again. This time, he’s sized up the perfect engine -- and improved it.

Scully, known as the "Quantum Cowboy" for his innovations in quantum physics and his Franklin Society prize-winning research into beef cattle production, has invented a theoretical design more efficient than the Carnot engine, which had stood for nearly two centuries as the standard for efficiency -- an engine so ideal it exists only in theory.

In an article published this month in Science, Scully reveals a design that extends it. Scully’s design employs lasers, mirrors and a concept known as "quantum coherence" to drive a piston with less wasted energy than in the Carnot model.



In Scully’s engine, a quantum heat bath supplies the power: beams of hot atoms produce radiation whose pressure drives a piston. Scully likens the atoms to coal and the radiation to steam that drove early railroad engines.

Scully, a member of the National Academy of Sciences who holds joint appointments in physics and electrical engineering, is world-renowned for his work. But even though he and his collaborators have improved the engine that had been considered perfect, Scully makes clear that they have not rewritten the laws of physics -- the second law of thermodynamics is not violated, he says, and perpetual motion is still a dream.

The new engine model follows Scully’s recent invention of the "quantum afterburner," designed to capture energy from a car’s exhaust, thus improving the efficiency of a classical four-stroke engine. The quantum afterburner uses a process that drains heat from the heat-engine gases and converts it into laser light.


###
Contact: Mark Minton, Communications Specialist, Texas A&M University College of Science 979-862-1237 mminton@science.tamu.edu; Marlan Scully 979-862-2333.

Mark Minton | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>