Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NMR - The movie

25.02.2003


Ten construction workers will often get a job done faster than one. But in digging a deep well, for instance, ten workers are a waste of human resources: the diggers can’t work simultaneously, as the second worker isn’t able to start digging until the first one has finished, and so on.



A similar challenge is encountered by scientists who study the structure and dynamics of molecules using nuclear magnetic resonance (NMR) spectroscopy. This technique serves as an essential tool in understanding numerous molecules – including proteins, nucleic acids and active pharmaceuticals – in their natural surroundings. It does this by exposing them to electromagnetic radiation and studying the dispersion patterns of the electromagnetic waves that hit the molecules. However, to obtain a full NMR picture of such complex molecules one needs to perform numerous measurements that are based on the same “serial” principle as well digging: hundreds or thousands of one-dimensional scans need to be performed one after the other; these scans need then to be combined to create a unified multidimensional picture of the molecule. While a single scan may take a fraction of a second, multidimensional procedures may last several hours or even days.

A team led by Prof. Lucio Frydman of the Weizmann Institute’s Chemical Physics Department has now found a way to perform multidimensional NMR with a single scan. The new method, described in the December 2002 issue of the Proceedings of the National Academy of Sciences USA (PNAS), is expected to significantly speed up molecular studies routinely performed in diverse fields.


The method “slices” a sample into numerous thin slices and then simultaneously performs all the measurements required by multidimensional NMR – lasting a fraction of a second each – on every one of these slices. The system then integrates all the measurements according to their precise location, generating an image that amounts to a multi-dimensional spectrum from the entire sample. Essentially, Prof. Frydman has found a way to allow NMR “well diggers” to work simultaneously.

Scientists will now be able to observe rapid changes taking place in molecules, such as the folding of proteins. In this sense, the new method developed by Prof. Frydman amounts to a transition from taking still “NMR photos” to recording “NMR movies.”

Prof. Frydman’s method may also have a great impact on the design of new drugs and the development of catalysts, particularly in the emerging fields of combinatorial chemistry and of metabonomics.


Contributing to this research were Dr. Adonis Lupulescu of the Chemical Physics Department and Dr. Tali Scherf of Chemical Services at the Weizmann Institute of Science.

Prof. Lucio Frydman’s research is supported by the Abraham and Sonia Rochlin Foundation, the Henri Gutwirth Fund for Research, the Philip M. Klutznick Fund, the late Ilse Katz, Switzerland, and Minerva Stiftung Gesellschaft fuer die Forschung m.b.H.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>