’Nano-lamp’ discovered by coincidence

On a semiconductor chip, one essential element is missing: a lightsource. An integrated lightsource can be very useful, however. In optical telecommunications, for example, or in lab-on-a-chip applications. University of Twente’s Phuong Le Minh developed a nanoscale integrated lightsourse. The principle of this tiny light source was discoverd by coincidence, performing semiconductor breakdown experiments. Le Minh succeeded in fabricating a micro channel

The nano-lightsource is formed by ‘controlled breakdown’ of the isolating oxide layer in a semiconductor device. At this moment, a tiny cell is formed working as a memory cell and as a light source as well, called an antifuse. The research group Semiconductor Components, of which Le Minh is a member, takes a lot of effort in investigating transistor reliability. In their experiments, the new ‘devices’ emitted light. What started as a surprising side-effect, could be transformed into a working nano-lamp. Le Minh has focused on applications in ‘microfluidics’: he has integrated the lightsource and a photodetector with a micron-size fluid channel and is able to distinguish various fluids going through. It is a very useful new part of a laboratory on a chip.

Apart from these lab-on-a-chip applications, research in optical telecommunications is focused on an ‘all-optical’ signal path, thus avoiding conversion losses, from optical to electronic vice versa. An integrated lightsource is very welcome there, as a new component. Silicon has excellent properties for a broad range of applications, but it is a very bad photon emitter: it is hard to fabricate an efficient light source in silicon. Coupling an external lightsource to a chip is a true piece of art as well: the system gets more voluminous than wanted, and coupling losses may appear. There is a worldwide quest for ‘solid state lighting’.

The lightsource is placed above the microchannel in a chip, with a photo detector on the bottomside of it. Detecting interference patterns, information can be retrieved about the fluid going through the channel. According to Le Minh, it is a step forward in the development of nano-lamps for various applications. He has performed his PhD research within the MESA+ research institute of the University of Twente, www.mesaplus.utwente.nl

Media Contact

Wiebe van der Veen alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors