Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Femtochemistry to Attophysics

20.02.2003

Amid a fast game in a vast venue, sports photography seeks to freeze motion and isolate small portions of space for special consideration. In the scientific world of the ultrafast and ultrasmall, stroboscopic effects are achieved with greatly attenuated laser pulses. The advent of laser light served up in femtosecond (or 10^-15 second) bursts has helped to elucidate the molecular world by freezing their vibrational and rotational motions. Scientists would of course like to instigate and monitor even shorter times and distances.

A collaboration between scientists at the Technical University of Vienna and the Max Planck Institute for Quantum Optics (MPQ) has now done precisely this. They have produced a series of 2.5-fsec pulses, each consisting of only a few cycles of a carrier light signal modulated within an amplitude envelope. In the case of the Vienna-MPQ experiment, however, all the pulses are identical (a feat not achieved previously) and the phase of the carrier wave within the envelope is controlled with a time resolution of about 100 attoseconds.

When the intense (100 GW) few-cycle pulse strikes an atom, an electron can be stripped away quickly, and reabsorbed just as quickly. This violent excursion results in the emission of a sharp x-ray spike with a duration even shorter than the pulse that excited the reaction. In fact the x-ray pulses are about 500 attoseconds long. Moreover, because all the waveforms of the optical pulse are identical, and controlled, the subsequent electron motions and x-ray emissions are also highly controlled and reproducible. At a talk at this week’s meeting of the American Association for the Advancement of Science (AAAS) in Denver, Vienna physicist Ferenc Krausz said that this sub-femtosecond control of electron currents represented true attophysics, a new technique for directing and watching atomic processes at unprecedentedly short time intervals. (See Baltuska et al., Nature, 6 February 2003.)

Phillip F. Schewe | PHYSICS NEWS UPDATE

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>