Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Femtochemistry to Attophysics

20.02.2003

Amid a fast game in a vast venue, sports photography seeks to freeze motion and isolate small portions of space for special consideration. In the scientific world of the ultrafast and ultrasmall, stroboscopic effects are achieved with greatly attenuated laser pulses. The advent of laser light served up in femtosecond (or 10^-15 second) bursts has helped to elucidate the molecular world by freezing their vibrational and rotational motions. Scientists would of course like to instigate and monitor even shorter times and distances.

A collaboration between scientists at the Technical University of Vienna and the Max Planck Institute for Quantum Optics (MPQ) has now done precisely this. They have produced a series of 2.5-fsec pulses, each consisting of only a few cycles of a carrier light signal modulated within an amplitude envelope. In the case of the Vienna-MPQ experiment, however, all the pulses are identical (a feat not achieved previously) and the phase of the carrier wave within the envelope is controlled with a time resolution of about 100 attoseconds.

When the intense (100 GW) few-cycle pulse strikes an atom, an electron can be stripped away quickly, and reabsorbed just as quickly. This violent excursion results in the emission of a sharp x-ray spike with a duration even shorter than the pulse that excited the reaction. In fact the x-ray pulses are about 500 attoseconds long. Moreover, because all the waveforms of the optical pulse are identical, and controlled, the subsequent electron motions and x-ray emissions are also highly controlled and reproducible. At a talk at this week’s meeting of the American Association for the Advancement of Science (AAAS) in Denver, Vienna physicist Ferenc Krausz said that this sub-femtosecond control of electron currents represented true attophysics, a new technique for directing and watching atomic processes at unprecedentedly short time intervals. (See Baltuska et al., Nature, 6 February 2003.)

Phillip F. Schewe | PHYSICS NEWS UPDATE

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>