Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From Femtochemistry to Attophysics


Amid a fast game in a vast venue, sports photography seeks to freeze motion and isolate small portions of space for special consideration. In the scientific world of the ultrafast and ultrasmall, stroboscopic effects are achieved with greatly attenuated laser pulses. The advent of laser light served up in femtosecond (or 10^-15 second) bursts has helped to elucidate the molecular world by freezing their vibrational and rotational motions. Scientists would of course like to instigate and monitor even shorter times and distances.

A collaboration between scientists at the Technical University of Vienna and the Max Planck Institute for Quantum Optics (MPQ) has now done precisely this. They have produced a series of 2.5-fsec pulses, each consisting of only a few cycles of a carrier light signal modulated within an amplitude envelope. In the case of the Vienna-MPQ experiment, however, all the pulses are identical (a feat not achieved previously) and the phase of the carrier wave within the envelope is controlled with a time resolution of about 100 attoseconds.

When the intense (100 GW) few-cycle pulse strikes an atom, an electron can be stripped away quickly, and reabsorbed just as quickly. This violent excursion results in the emission of a sharp x-ray spike with a duration even shorter than the pulse that excited the reaction. In fact the x-ray pulses are about 500 attoseconds long. Moreover, because all the waveforms of the optical pulse are identical, and controlled, the subsequent electron motions and x-ray emissions are also highly controlled and reproducible. At a talk at this week’s meeting of the American Association for the Advancement of Science (AAAS) in Denver, Vienna physicist Ferenc Krausz said that this sub-femtosecond control of electron currents represented true attophysics, a new technique for directing and watching atomic processes at unprecedentedly short time intervals. (See Baltuska et al., Nature, 6 February 2003.)


More articles from Physics and Astronomy:

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>