Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nearly-Naked Stars Boost the Pulse of Asteroseismology

10.02.2003


What goes on inside the heart of a star? Astronomers have been developing theories about stars’ inner workings for decades, but evidence to confirm the details of those theories has been sparse.


Figure1: A 5x5 arcminute CCD image of the prototype gravity-mode pulsating subdwarf B star, PG1716+426, and nearby comparison stars. North is up and East is to the left. The subdwarf B star pulsator is the brightest star in the northeast quadrant. The image was taken through an R filter at the University of Arizona Mt. Bigelow 1.6 m telescope and is one of hundreds used to measure the light curve of the star.
Photo Credit: Courtesy of Elizabeth Green of Steward Observatory at the University of Arizona and NSF.



In research supported by NSF, University of Arizona astronomer Elizabeth Green and colleagues have found a new subset of "nearly-naked" stars that dim and brighten due to pulses in their cores. The stars, which may help unlock secrets of advanced stages of stellar evolution, are described in the January 20 Astrophysical Journal Letters.

Chemical and physical changes inside star cores cause the light they emit to pulsate, becoming brighter and dimmer in slowly changing patterns. Analysis of these pulsations would give scientists a better of idea of the processes going on inside stars and help them understand how they change from one type to another. Until now, though, astronomers have been frustrated by the faintness of the pulses.


One problem is that most star cores are wrapped in a thick envelope of hydrogen gas that obscures any pulses that might occur. In 1997, astronomers thought they had found a new approach to the problem when they discovered a new class of pulsating stars, called subdwarf B stars. These stars are very hot evolved stars that have lost that outer envelope and are essentially "naked" cores. However, previous observations of the hottest subdwarf B stars revealed that their pulsations are weak and generally occur only minutes apart, making them hard to measure with conventional telescopes.

Astronomer Elizabeth Green, working with undergraduates from the University of Arizona, has been observing 80 cooler subdwarf B stars and is now releasing eye-opening results. Using a telescope operated by the university’s Steward Observatory, the group found that 20 of the cooler stars commonly pulsate at relatively long intervals of about one hour, and that each star also has several pulse patterns. Green’s collaborators, researchers Gilles Fontaine of the University of Montreal, and Mike Reed of Southwest Missouri State, say the processes causing the pulses are not yet understood, but that they originate in much deeper layers of the star than pulses in the hotter subdwarf B observed before.

Because they are abundant and easier to observe, the newly discovered stars should expand opportunities for researchers around the world to carry out asteroseismology. Using the multiple pulses, researchers will study the hearts of stars much as seismologists on earth study earthquakes to determine the Earth’s interior structure.

Most of what scientists know about stellar interiors is based on theory, but there are competing explanations of why stars like our sun evolve from one type to another. Now that models of star cores will have to explain not just one but several patterns of pulsation in a single star, Green says the new data will narrow the field of theories and help researchers better predict the eventual fate of stars like our own Sun

Roberta Hotinski | National Science Foundation

More articles from Physics and Astronomy:

nachricht New Method of Characterizing Graphene
30.05.2017 | Universität Basel

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>