Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nearly-Naked Stars Boost the Pulse of Asteroseismology

10.02.2003


What goes on inside the heart of a star? Astronomers have been developing theories about stars’ inner workings for decades, but evidence to confirm the details of those theories has been sparse.


Figure1: A 5x5 arcminute CCD image of the prototype gravity-mode pulsating subdwarf B star, PG1716+426, and nearby comparison stars. North is up and East is to the left. The subdwarf B star pulsator is the brightest star in the northeast quadrant. The image was taken through an R filter at the University of Arizona Mt. Bigelow 1.6 m telescope and is one of hundreds used to measure the light curve of the star.
Photo Credit: Courtesy of Elizabeth Green of Steward Observatory at the University of Arizona and NSF.



In research supported by NSF, University of Arizona astronomer Elizabeth Green and colleagues have found a new subset of "nearly-naked" stars that dim and brighten due to pulses in their cores. The stars, which may help unlock secrets of advanced stages of stellar evolution, are described in the January 20 Astrophysical Journal Letters.

Chemical and physical changes inside star cores cause the light they emit to pulsate, becoming brighter and dimmer in slowly changing patterns. Analysis of these pulsations would give scientists a better of idea of the processes going on inside stars and help them understand how they change from one type to another. Until now, though, astronomers have been frustrated by the faintness of the pulses.


One problem is that most star cores are wrapped in a thick envelope of hydrogen gas that obscures any pulses that might occur. In 1997, astronomers thought they had found a new approach to the problem when they discovered a new class of pulsating stars, called subdwarf B stars. These stars are very hot evolved stars that have lost that outer envelope and are essentially "naked" cores. However, previous observations of the hottest subdwarf B stars revealed that their pulsations are weak and generally occur only minutes apart, making them hard to measure with conventional telescopes.

Astronomer Elizabeth Green, working with undergraduates from the University of Arizona, has been observing 80 cooler subdwarf B stars and is now releasing eye-opening results. Using a telescope operated by the university’s Steward Observatory, the group found that 20 of the cooler stars commonly pulsate at relatively long intervals of about one hour, and that each star also has several pulse patterns. Green’s collaborators, researchers Gilles Fontaine of the University of Montreal, and Mike Reed of Southwest Missouri State, say the processes causing the pulses are not yet understood, but that they originate in much deeper layers of the star than pulses in the hotter subdwarf B observed before.

Because they are abundant and easier to observe, the newly discovered stars should expand opportunities for researchers around the world to carry out asteroseismology. Using the multiple pulses, researchers will study the hearts of stars much as seismologists on earth study earthquakes to determine the Earth’s interior structure.

Most of what scientists know about stellar interiors is based on theory, but there are competing explanations of why stars like our sun evolve from one type to another. Now that models of star cores will have to explain not just one but several patterns of pulsation in a single star, Green says the new data will narrow the field of theories and help researchers better predict the eventual fate of stars like our own Sun

Roberta Hotinski | National Science Foundation

More articles from Physics and Astronomy:

nachricht Artificial Intelligence Helps in the Discovery of New Materials
21.09.2016 | Universität Basel

nachricht Magnetic polaron imaged for the first time
19.09.2016 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>