Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Violent truth behind Sun’s ‘Gentle Giants’ uncovered

10.02.2003


Solar Physicists at the Mullard Space Science Laboratory, University College London (MSSL-UCL) have discovered new clues to understanding explosions on the Sun.



Coronal mass ejections are violent explosions that can fling electrified gas [plasma] with a mass greater than Mount Everest towards the Earth with destructive consequences for satellites. They can originate from active regions on the Sun, long known to consist of forests of loops filled with plasma. These active loops are roughly 50,000 km in size. However, active regions on either side of the solar disk are frequently connected by giant loops, which can bridge the Sun’s equator. These loops have long been thought of as the gentle giants of the Sun, but in a paper to be published early this year in the journal of Astronomy and Astrophysics, the researchers describe the explosive characteristics of these giants.

An example of a giant loop can clearly be seen in figure one, where the width of the arrow represents the size of the Earth. These giant loops of plasma are 450,000 km long - large enough to engulf 40 Earths. If Concorde could fly along one of these loops, it would take nearly 9 days to complete the journey!


Coronal mass ejections are violent explosions that cause all sorts of effects from the destruction of satellites, to the creation of the aurora. These effects are commonly referred to as ’space weather’. Using data taken by the Yohkoh and SOHO satellites studying the Sun, the scientists analysed the giant loops to see how frequently they erupt. In the past only one eruption had been observed and so they have been considered the gentle giants of the Sun that do not explode. The researchers found that not only can these huge structures be thrown away from the Sun, but they can also be heated up by a factor of 5, to temperatures of 14 thousand times the temperature of boiling water. They investigated how the loops explode, and it was found that the longer the loop, the more likely it is to erupt - so these are culprits to watch more carefully in the future!

Alexi Glover, part of the space weather team at the European Space Agency [ESA], explains, "These huge loops have been observed for many years - but their connection with coronal mass ejections is only just being understood. In the future we hope to be able to predict coronal mass ejections before they take place, and step by step we are heading towards that goal."

Because of our increasing reliance on communication and navigation satellites for TV, GPS and national and international security, it is vital that we understand how the Sun can release these explosions.

Dr. Louise Harra of MSSL-UCL says, "Space weather is a rapidly developing field, and a vital key to progress is by understanding in detail the physics of Sun. The UK plays a leading role in solar physics and these new results are helping us make substantial advancements in our understanding of these beautiful, but potentially hazardous, coronal mass ejections."

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk/Nw/Press/giant_loops.asp

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>