Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When old is new again

04.10.2010
A fundamental effect associated with electrons also occurs in non-charged particles—a potential boon for spintronics

Just as electronics revolutionized computing and communications technology, spintronics is touted to follow suit. This relatively new field involves manipulating the flow of a magnetism-related property called ‘spin’.

In magnons, a spintronic counterpart of electrons, Naoto Nagaosa from the RIKEN Advanced Science Institute (ASI) in Wako and his colleagues have observed an effect first seen with electrons over 130 years ago: the Hall effect1. The Hall effect is used in sensitive detectors, so the researchers believe their finding could lead to new applications for magnetic insulators.

The Hall effect arises because a charge-carrying particle such as an electron experiences a force perpendicular to its direction of motion as it moves through a magnetic field of a conducting material. The result is a build-up of charges of opposite signs on either side of the material, which creates a measureable electric field. Magnons, however, have no charge, so an analogous effect had never been observed previously.

“The Hall effect is one of the most fundamental phenomena in condensed matter physics,” explains Nagaosa. “It is important to study to what extent we can apply ideas from conventional electronics to spintronics.” Nagaosa, along with Yoshinori Tokura also from ASI, Yoshinori Onose and co-workers from The University of Tokyo, and Hosho Katsura from the University of California, Santa Barbara, USA, studied the magnetic and thermal properties of the insulating ferromagnet Lu2V2O7 at low temperatures. Rather than the electric field associated with the conventional effect, the Hall effect manifested in this material as a thermal conductivity gradient across the sample. This difference occurs because the magnons carry heat, rather than charge.

The researchers showed that the size of the effect is not proportional to the applied magnetic field, but has a maximum at relatively low fields. This supports the hypothesis that magnons, influenced by the relativistic interaction, are responsible because the number of magnons is known to be reduced at these low-level magnetic fields. They also observed that the conductivity gradient started to decrease at higher fields. This observation allowed Nagaosa and colleagues to rule out lattice vibrations, or phonons, as another possible underlying cause of the experimental results: a phonon-induced thermal conductivity gradient would be expected to continue to increase with magnetic field.

“According to our theoretical prediction, only certain types of the crystal structure show this magnon Hall effect,” says Nagaosa. “To confirm this theory, we next aim to check that the phenomenon is absent in more conventional structures such as a cubic lattice.”

The corresponding author for this highlight is based at the Theoretical Design Team, RIKEN Advanced Science Institute

Journal information

1. Onose, Y., Ideue, T., Katsura, H., Shiomi, Y., Nagaosa, N. & Tokura, Y. Observation of the magnon Hall effect. Science 329, 297–299 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6400
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>