Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When old is new again

04.10.2010
A fundamental effect associated with electrons also occurs in non-charged particles—a potential boon for spintronics

Just as electronics revolutionized computing and communications technology, spintronics is touted to follow suit. This relatively new field involves manipulating the flow of a magnetism-related property called ‘spin’.

In magnons, a spintronic counterpart of electrons, Naoto Nagaosa from the RIKEN Advanced Science Institute (ASI) in Wako and his colleagues have observed an effect first seen with electrons over 130 years ago: the Hall effect1. The Hall effect is used in sensitive detectors, so the researchers believe their finding could lead to new applications for magnetic insulators.

The Hall effect arises because a charge-carrying particle such as an electron experiences a force perpendicular to its direction of motion as it moves through a magnetic field of a conducting material. The result is a build-up of charges of opposite signs on either side of the material, which creates a measureable electric field. Magnons, however, have no charge, so an analogous effect had never been observed previously.

“The Hall effect is one of the most fundamental phenomena in condensed matter physics,” explains Nagaosa. “It is important to study to what extent we can apply ideas from conventional electronics to spintronics.” Nagaosa, along with Yoshinori Tokura also from ASI, Yoshinori Onose and co-workers from The University of Tokyo, and Hosho Katsura from the University of California, Santa Barbara, USA, studied the magnetic and thermal properties of the insulating ferromagnet Lu2V2O7 at low temperatures. Rather than the electric field associated with the conventional effect, the Hall effect manifested in this material as a thermal conductivity gradient across the sample. This difference occurs because the magnons carry heat, rather than charge.

The researchers showed that the size of the effect is not proportional to the applied magnetic field, but has a maximum at relatively low fields. This supports the hypothesis that magnons, influenced by the relativistic interaction, are responsible because the number of magnons is known to be reduced at these low-level magnetic fields. They also observed that the conductivity gradient started to decrease at higher fields. This observation allowed Nagaosa and colleagues to rule out lattice vibrations, or phonons, as another possible underlying cause of the experimental results: a phonon-induced thermal conductivity gradient would be expected to continue to increase with magnetic field.

“According to our theoretical prediction, only certain types of the crystal structure show this magnon Hall effect,” says Nagaosa. “To confirm this theory, we next aim to check that the phenomenon is absent in more conventional structures such as a cubic lattice.”

The corresponding author for this highlight is based at the Theoretical Design Team, RIKEN Advanced Science Institute

Journal information

1. Onose, Y., Ideue, T., Katsura, H., Shiomi, Y., Nagaosa, N. & Tokura, Y. Observation of the magnon Hall effect. Science 329, 297–299 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6400
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>