Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Measure the speed of light using Milky Way Stars®


Nothing travels faster than light – it only takes 8 minutes for it to reach the Earth from the nearest star, the Sun, which is 150 million kilometres away. Now anyone can measure this speed – with chocolate stars and a microwave oven! The experiment is described on a new Institute of Physics web resource for teachers about fun physics demonstrations, inspired by the Physics on Stage 2 event.

Ian Cuthbert, Education Departmental Co-ordinator at the Institute of Physics, works out the speed of light using Milky Way Stars® and a microwave

The only equipment you need for this experiment is a microwave, a ruler and chocolate, cheese or any other food that melts. Remove the turntable from the microwave and replace with chocolate on a plate (so the plate does not rotate), and heat until it just starts to melt – about 20 seconds, depending on the power of the oven. There will be some melted hot spots and some cold solid spots in the chocolate. The distance between the hot spots is half the wavelength of the microwaves, and the frequency of the microwaves will be printed on the back of the oven. The speed of light is equal to the wavelength multiplied by the frequency of an electromagnetic wave (microwaves and visible light are both examples of electromagnetic waves). So from this simple experiment, and some easy maths, you can work out the speed of light from Milky Way Magic Stars®!

The resource describes this and many more wacky, weird and most of all fun physics demonstrations, which were presented at Physics on Stage 2, a Europe-wide teachers’ event held last spring in the Netherlands.

“Measuring the speed of light by melting chocolate is just one of hundreds of physics experiments you can do at home”, said Dr Kerry Parker, a teacher and co-author of the poster. “As UK representatives at Physics on Stage 2 we had such a rich experience that we wanted to share our favourite experiments with other teachers. By putting the information on the Web, the wonderful ideas will not be forgotten.”

Michelle Cain | alfa
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>