Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First US-built Component for Large Hadron Collider

22.01.2003


In a milestone for global science collaboration, CERN took delivery today of the first US-built contribution to what will be the world’s highest-energy particle accelerator. The superconducting magnet, built at the US Brookhaven National Laboratory will become a key component of the Large Hadron Collider (LHC).



It is the first of several advanced accelerator elements the US will provide for the LHC under the terms of a 1998 agreement between CERN and the US Department of Energy (DOE) and National Science Foundation (NSF).

"The arrival of this magnet from Brookhaven marks a new era in international collaboration in particle physics," said CERN Director General Luciano Maiani. "The LHC is the first truly global collaboration in particle physics, and this magnet joins a steadily growing stream of LHC components arriving from around the world - a tangible demonstration of people of all kinds working together towards a common goal."


To reach the highest energy ever produced by an accelerator, the LHC will use more than 6,000 superconducting magnets, most of which are being built by CERN’s industrial partners in Europe. As part of the total $531-million US contribution to the LHC, Brookhaven agreed to develop and manufacture the LHC’s interaction-region dipole magnets, which will guide the LHC’s two counter-rotating beams of protons into collision.

"I congratulate the Brookhaven team on this milestone for international collaboration in scientific research," said Dr. Raymond L. Orbach, Director of the Department of Energy’s Office of Science, which funds the US LHC magnet contributions. "It is tangible evidence of the successful fulfillment of the commitment we have made to provide advanced US magnet technology and accelerator expertise for the next step in worldwide particle physics research at the energy frontier. And it is exciting to be a party to the future accomplishments of the LHC."

The 25-ton Brookhaven magnet, the first of 20 that the laboratory will ultimately provide, took nine months to construct, with more than 100 scientists, engineers and technicians contributing to its successful completion. Brookhaven’s Superconducting Magnet Division is now building the remaining 19 magnets, which will be shipped to CERN later this year.

In addition to Brookhaven, other US partners on the project include the Fermi National Accelerator Laboratory (Fermilab), which is constructing 18 quadrupole magnets, and Lawrence Berkeley National Laboratory, which is working on superconducting cable and utility boxes for the magnet assemblies.

"Our colleagues at Brookhaven have done a splendid job, producing the first US-built superconducting magnet for the LHC project in time and according to specification," said LHC project leader Lyn Evans. "This will soon be followed by further deliveries from Brookhaven as well as from Fermilab and Lawrence Berkeley National Laboratory, all actively participating in the LHC design and construction. This constitutes a major step forward in international collaboration in the construction and exploitation of large facilities for particle physics research."

Fermilab physicist Jim Strait, Project Manager for the US LHC accelerator effort, said the collaborative nature of the project is integral to its success. "The delivery of the first US superconducting magnet to CERN for the LHC is a significant accomplishment by Brookhaven, and a major milestone in international collaboration on high-energy accelerators," said Strait. "The US collaboration with CERN is proving very productive for both sides, and I hope it will continue in the future for the benefit of world-wide particle physics."

Scheduled to start in April 2007, the LHC will probe deeper into matter than ever before to explore a new energy region and search for new phenomena. The 27-kilometre rings of the LHC will circulate two counter-rotating beams of protons at nearly the speed of light (300,000 kilometres or 186,000 miles per second) while maintaining the protons precisely at the centre of the beam pipe containing them.

CERN
James Gillies
Fon +41-22-767-4101
E-mail: James.Gillies@cern.ch

James Gillies | AlphaGalileo

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>