Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First US-built Component for Large Hadron Collider

22.01.2003


In a milestone for global science collaboration, CERN took delivery today of the first US-built contribution to what will be the world’s highest-energy particle accelerator. The superconducting magnet, built at the US Brookhaven National Laboratory will become a key component of the Large Hadron Collider (LHC).



It is the first of several advanced accelerator elements the US will provide for the LHC under the terms of a 1998 agreement between CERN and the US Department of Energy (DOE) and National Science Foundation (NSF).

"The arrival of this magnet from Brookhaven marks a new era in international collaboration in particle physics," said CERN Director General Luciano Maiani. "The LHC is the first truly global collaboration in particle physics, and this magnet joins a steadily growing stream of LHC components arriving from around the world - a tangible demonstration of people of all kinds working together towards a common goal."


To reach the highest energy ever produced by an accelerator, the LHC will use more than 6,000 superconducting magnets, most of which are being built by CERN’s industrial partners in Europe. As part of the total $531-million US contribution to the LHC, Brookhaven agreed to develop and manufacture the LHC’s interaction-region dipole magnets, which will guide the LHC’s two counter-rotating beams of protons into collision.

"I congratulate the Brookhaven team on this milestone for international collaboration in scientific research," said Dr. Raymond L. Orbach, Director of the Department of Energy’s Office of Science, which funds the US LHC magnet contributions. "It is tangible evidence of the successful fulfillment of the commitment we have made to provide advanced US magnet technology and accelerator expertise for the next step in worldwide particle physics research at the energy frontier. And it is exciting to be a party to the future accomplishments of the LHC."

The 25-ton Brookhaven magnet, the first of 20 that the laboratory will ultimately provide, took nine months to construct, with more than 100 scientists, engineers and technicians contributing to its successful completion. Brookhaven’s Superconducting Magnet Division is now building the remaining 19 magnets, which will be shipped to CERN later this year.

In addition to Brookhaven, other US partners on the project include the Fermi National Accelerator Laboratory (Fermilab), which is constructing 18 quadrupole magnets, and Lawrence Berkeley National Laboratory, which is working on superconducting cable and utility boxes for the magnet assemblies.

"Our colleagues at Brookhaven have done a splendid job, producing the first US-built superconducting magnet for the LHC project in time and according to specification," said LHC project leader Lyn Evans. "This will soon be followed by further deliveries from Brookhaven as well as from Fermilab and Lawrence Berkeley National Laboratory, all actively participating in the LHC design and construction. This constitutes a major step forward in international collaboration in the construction and exploitation of large facilities for particle physics research."

Fermilab physicist Jim Strait, Project Manager for the US LHC accelerator effort, said the collaborative nature of the project is integral to its success. "The delivery of the first US superconducting magnet to CERN for the LHC is a significant accomplishment by Brookhaven, and a major milestone in international collaboration on high-energy accelerators," said Strait. "The US collaboration with CERN is proving very productive for both sides, and I hope it will continue in the future for the benefit of world-wide particle physics."

Scheduled to start in April 2007, the LHC will probe deeper into matter than ever before to explore a new energy region and search for new phenomena. The 27-kilometre rings of the LHC will circulate two counter-rotating beams of protons at nearly the speed of light (300,000 kilometres or 186,000 miles per second) while maintaining the protons precisely at the centre of the beam pipe containing them.

CERN
James Gillies
Fon +41-22-767-4101
E-mail: James.Gillies@cern.ch

James Gillies | AlphaGalileo

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>