Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting sensor helps detecting gravitation waves

15.01.2003


To be able to detect gravitation waves in space, physicist have to measure truly minimal displacements: ten billion times smaller than the size of an atom. An improved superconducting sensor is a suitable candidate for this job, Martin Podt of the University of Twente now states in his PhD thesis. He has improved the sensitivity of a so-called ‘SQUID’ in way that it can be combined with a large ball-shaped gravitation detector. Podt succeeds in this by improving the sensitivity. He integrates the sensor with electronics and lowers the operating temperature. He is defending his Phd thesis on January 17, within the Faculty of Science of the University of Twente, The Netherlands.



Gravitation waves, ‘ripples in space’, are very interesting because they provide information about collisions in space. Physicist around the world are working on ways to detect them. Leiden University in The Netherlands currently develops a ball-shaped detector of 65 centimeters in diameter. This grows over a distance of no more than 10 exp –20 meter. To compare it with the size of the earth (and therefore multiplying the size by 20 million), you would like to detect a growth of one fifth of a picometer (one picometer is a millionth of a millionth of a meter).

The superconducting sensor Martin Podt of the University of Twente has designed and developed, gets to the desired sensitivity and can be combined with the MiniGrail system. It is a so-called Superconducting Qantum Interference Devices (SQUID). Podt has improved it by lowering the temperature to a value close to zero Kelvin, and by integrating sensor and electronics. “Our current SQUID did not reach the extreme demands of this application. We would then measure too much noise, and you simply cannot distinguish the noise from the parameter you want to measure,” says Podt. He lowers the temperature to about 20 milliKelvin -the MiniGrail is also cooled down to that temperature. The noise of the ‘conventional’ SQUID is introduced when the signal is amplified using an amplifier operating at room temperature. Podt therefore chooses to put the amplifier on the chip as well, so that both are operating at very low temperatures. The result is that it works substantially faster and introduces no noise.


A SQUID, however, measures a magnetic field or flux, and no distance. Therefore the displacement of the MiniGrail will be converted into an electric current. This gives a magnetic flux, and that is what Podt’s system will detect. Together with the scientists from Leiden, he will further develop this principle the coming year.

Already now, the SQUID is one of the most successfull applications of superconductivity. In their current form, they are already fit for detecting the very small magnetic activity of the brain or the heart, even of a foetus. Unlike the system Podt proposes, it is also possible to produce SQUIDs working on a higher temperature and still . These can be cooled down in an easier way and show superconductivity at a higher temperature, but they don’t reach the requirements Podt wants for his application.

Wiebe van der Veen | EurekAlert!
Further information:
http://www-lt.tn.utwente.nl/lt/

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>