Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting sensor helps detecting gravitation waves

15.01.2003


To be able to detect gravitation waves in space, physicist have to measure truly minimal displacements: ten billion times smaller than the size of an atom. An improved superconducting sensor is a suitable candidate for this job, Martin Podt of the University of Twente now states in his PhD thesis. He has improved the sensitivity of a so-called ‘SQUID’ in way that it can be combined with a large ball-shaped gravitation detector. Podt succeeds in this by improving the sensitivity. He integrates the sensor with electronics and lowers the operating temperature. He is defending his Phd thesis on January 17, within the Faculty of Science of the University of Twente, The Netherlands.



Gravitation waves, ‘ripples in space’, are very interesting because they provide information about collisions in space. Physicist around the world are working on ways to detect them. Leiden University in The Netherlands currently develops a ball-shaped detector of 65 centimeters in diameter. This grows over a distance of no more than 10 exp –20 meter. To compare it with the size of the earth (and therefore multiplying the size by 20 million), you would like to detect a growth of one fifth of a picometer (one picometer is a millionth of a millionth of a meter).

The superconducting sensor Martin Podt of the University of Twente has designed and developed, gets to the desired sensitivity and can be combined with the MiniGrail system. It is a so-called Superconducting Qantum Interference Devices (SQUID). Podt has improved it by lowering the temperature to a value close to zero Kelvin, and by integrating sensor and electronics. “Our current SQUID did not reach the extreme demands of this application. We would then measure too much noise, and you simply cannot distinguish the noise from the parameter you want to measure,” says Podt. He lowers the temperature to about 20 milliKelvin -the MiniGrail is also cooled down to that temperature. The noise of the ‘conventional’ SQUID is introduced when the signal is amplified using an amplifier operating at room temperature. Podt therefore chooses to put the amplifier on the chip as well, so that both are operating at very low temperatures. The result is that it works substantially faster and introduces no noise.


A SQUID, however, measures a magnetic field or flux, and no distance. Therefore the displacement of the MiniGrail will be converted into an electric current. This gives a magnetic flux, and that is what Podt’s system will detect. Together with the scientists from Leiden, he will further develop this principle the coming year.

Already now, the SQUID is one of the most successfull applications of superconductivity. In their current form, they are already fit for detecting the very small magnetic activity of the brain or the heart, even of a foetus. Unlike the system Podt proposes, it is also possible to produce SQUIDs working on a higher temperature and still . These can be cooled down in an easier way and show superconductivity at a higher temperature, but they don’t reach the requirements Podt wants for his application.

Wiebe van der Veen | EurekAlert!
Further information:
http://www-lt.tn.utwente.nl/lt/

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>