Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting sensor helps detecting gravitation waves

15.01.2003


To be able to detect gravitation waves in space, physicist have to measure truly minimal displacements: ten billion times smaller than the size of an atom. An improved superconducting sensor is a suitable candidate for this job, Martin Podt of the University of Twente now states in his PhD thesis. He has improved the sensitivity of a so-called ‘SQUID’ in way that it can be combined with a large ball-shaped gravitation detector. Podt succeeds in this by improving the sensitivity. He integrates the sensor with electronics and lowers the operating temperature. He is defending his Phd thesis on January 17, within the Faculty of Science of the University of Twente, The Netherlands.



Gravitation waves, ‘ripples in space’, are very interesting because they provide information about collisions in space. Physicist around the world are working on ways to detect them. Leiden University in The Netherlands currently develops a ball-shaped detector of 65 centimeters in diameter. This grows over a distance of no more than 10 exp –20 meter. To compare it with the size of the earth (and therefore multiplying the size by 20 million), you would like to detect a growth of one fifth of a picometer (one picometer is a millionth of a millionth of a meter).

The superconducting sensor Martin Podt of the University of Twente has designed and developed, gets to the desired sensitivity and can be combined with the MiniGrail system. It is a so-called Superconducting Qantum Interference Devices (SQUID). Podt has improved it by lowering the temperature to a value close to zero Kelvin, and by integrating sensor and electronics. “Our current SQUID did not reach the extreme demands of this application. We would then measure too much noise, and you simply cannot distinguish the noise from the parameter you want to measure,” says Podt. He lowers the temperature to about 20 milliKelvin -the MiniGrail is also cooled down to that temperature. The noise of the ‘conventional’ SQUID is introduced when the signal is amplified using an amplifier operating at room temperature. Podt therefore chooses to put the amplifier on the chip as well, so that both are operating at very low temperatures. The result is that it works substantially faster and introduces no noise.


A SQUID, however, measures a magnetic field or flux, and no distance. Therefore the displacement of the MiniGrail will be converted into an electric current. This gives a magnetic flux, and that is what Podt’s system will detect. Together with the scientists from Leiden, he will further develop this principle the coming year.

Already now, the SQUID is one of the most successfull applications of superconductivity. In their current form, they are already fit for detecting the very small magnetic activity of the brain or the heart, even of a foetus. Unlike the system Podt proposes, it is also possible to produce SQUIDs working on a higher temperature and still . These can be cooled down in an easier way and show superconductivity at a higher temperature, but they don’t reach the requirements Podt wants for his application.

Wiebe van der Veen | EurekAlert!
Further information:
http://www-lt.tn.utwente.nl/lt/

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>