Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting sensor helps detecting gravitation waves

15.01.2003


To be able to detect gravitation waves in space, physicist have to measure truly minimal displacements: ten billion times smaller than the size of an atom. An improved superconducting sensor is a suitable candidate for this job, Martin Podt of the University of Twente now states in his PhD thesis. He has improved the sensitivity of a so-called ‘SQUID’ in way that it can be combined with a large ball-shaped gravitation detector. Podt succeeds in this by improving the sensitivity. He integrates the sensor with electronics and lowers the operating temperature. He is defending his Phd thesis on January 17, within the Faculty of Science of the University of Twente, The Netherlands.



Gravitation waves, ‘ripples in space’, are very interesting because they provide information about collisions in space. Physicist around the world are working on ways to detect them. Leiden University in The Netherlands currently develops a ball-shaped detector of 65 centimeters in diameter. This grows over a distance of no more than 10 exp –20 meter. To compare it with the size of the earth (and therefore multiplying the size by 20 million), you would like to detect a growth of one fifth of a picometer (one picometer is a millionth of a millionth of a meter).

The superconducting sensor Martin Podt of the University of Twente has designed and developed, gets to the desired sensitivity and can be combined with the MiniGrail system. It is a so-called Superconducting Qantum Interference Devices (SQUID). Podt has improved it by lowering the temperature to a value close to zero Kelvin, and by integrating sensor and electronics. “Our current SQUID did not reach the extreme demands of this application. We would then measure too much noise, and you simply cannot distinguish the noise from the parameter you want to measure,” says Podt. He lowers the temperature to about 20 milliKelvin -the MiniGrail is also cooled down to that temperature. The noise of the ‘conventional’ SQUID is introduced when the signal is amplified using an amplifier operating at room temperature. Podt therefore chooses to put the amplifier on the chip as well, so that both are operating at very low temperatures. The result is that it works substantially faster and introduces no noise.


A SQUID, however, measures a magnetic field or flux, and no distance. Therefore the displacement of the MiniGrail will be converted into an electric current. This gives a magnetic flux, and that is what Podt’s system will detect. Together with the scientists from Leiden, he will further develop this principle the coming year.

Already now, the SQUID is one of the most successfull applications of superconductivity. In their current form, they are already fit for detecting the very small magnetic activity of the brain or the heart, even of a foetus. Unlike the system Podt proposes, it is also possible to produce SQUIDs working on a higher temperature and still . These can be cooled down in an easier way and show superconductivity at a higher temperature, but they don’t reach the requirements Podt wants for his application.

Wiebe van der Veen | EurekAlert!
Further information:
http://www-lt.tn.utwente.nl/lt/

More articles from Physics and Astronomy:

nachricht NASA Protects its super heroes from space weather
17.08.2017 | NASA/Johnson Space Center

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>