Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting sensor helps detecting gravitation waves

15.01.2003


To be able to detect gravitation waves in space, physicist have to measure truly minimal displacements: ten billion times smaller than the size of an atom. An improved superconducting sensor is a suitable candidate for this job, Martin Podt of the University of Twente now states in his PhD thesis. He has improved the sensitivity of a so-called ‘SQUID’ in way that it can be combined with a large ball-shaped gravitation detector. Podt succeeds in this by improving the sensitivity. He integrates the sensor with electronics and lowers the operating temperature. He is defending his Phd thesis on January 17, within the Faculty of Science of the University of Twente, The Netherlands.



Gravitation waves, ‘ripples in space’, are very interesting because they provide information about collisions in space. Physicist around the world are working on ways to detect them. Leiden University in The Netherlands currently develops a ball-shaped detector of 65 centimeters in diameter. This grows over a distance of no more than 10 exp –20 meter. To compare it with the size of the earth (and therefore multiplying the size by 20 million), you would like to detect a growth of one fifth of a picometer (one picometer is a millionth of a millionth of a meter).

The superconducting sensor Martin Podt of the University of Twente has designed and developed, gets to the desired sensitivity and can be combined with the MiniGrail system. It is a so-called Superconducting Qantum Interference Devices (SQUID). Podt has improved it by lowering the temperature to a value close to zero Kelvin, and by integrating sensor and electronics. “Our current SQUID did not reach the extreme demands of this application. We would then measure too much noise, and you simply cannot distinguish the noise from the parameter you want to measure,” says Podt. He lowers the temperature to about 20 milliKelvin -the MiniGrail is also cooled down to that temperature. The noise of the ‘conventional’ SQUID is introduced when the signal is amplified using an amplifier operating at room temperature. Podt therefore chooses to put the amplifier on the chip as well, so that both are operating at very low temperatures. The result is that it works substantially faster and introduces no noise.


A SQUID, however, measures a magnetic field or flux, and no distance. Therefore the displacement of the MiniGrail will be converted into an electric current. This gives a magnetic flux, and that is what Podt’s system will detect. Together with the scientists from Leiden, he will further develop this principle the coming year.

Already now, the SQUID is one of the most successfull applications of superconductivity. In their current form, they are already fit for detecting the very small magnetic activity of the brain or the heart, even of a foetus. Unlike the system Podt proposes, it is also possible to produce SQUIDs working on a higher temperature and still . These can be cooled down in an easier way and show superconductivity at a higher temperature, but they don’t reach the requirements Podt wants for his application.

Wiebe van der Veen | EurekAlert!
Further information:
http://www-lt.tn.utwente.nl/lt/

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>