Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of Galaxy-Spanning Magnetic Fields Explained

10.01.2003


Researchers at the University of Rochester have uncovered how giant magnetic fields up to a billion, billion miles across, such as the one that envelopes our galaxy, are able to take shape despite a mystery that suggested they should collapse almost before they’d begun to form. Astrophysicists have long believed that as these large magnetic fields grow, opposing small-scale fields should grow more quickly, thwarting the evolution of any giant magnetic field. The team discovered instead that the simple motion of gas can fight against those small-scale fields long enough for the large fields to form. The results are published in a recent issue of Physical Review Letters.



"Understanding exactly how these large-scale fields form has been a problem for astrophysicists for a long time," says Eric Blackman, assistant professor of physics and astronomy. "For almost 50 years the standard approaches have been plagued by a fundamental mystery that we have now resolved."

The mechanism, called a dynamo, that creates the large-scale field twists up the magnetic field lines as if they were elastic ribbons embedded in the sun, galaxy or other celestial object. Turbulence kicked up by shifting gas, supernovae, or nearly any kind of random movement of matter, combined with the fact that the star or galaxy is spinning carries these ribbons outward toward the edges. As they expand outward they slow like a spinning skater extending her arms and the resulting speed difference causes the ribbons to twist up into a large helix, creating the overall orderly structure of the field.


The turbulence that creates the large-scale field, however, also creates opposing small-scale fields due to the principle of conservation of magnetic helicity. As both large and small fields get stronger, they start to suppress the turbulence that gave rise to them. This is called a "backreaction," and researchers have long suspected that it might halt the growth of the large field long before it reached the strength we see in the universe today. Blackman and George Field, the Robert Wheeler Wilson Professor of Applied Astronomy at Harvard University, found that in the early stages the backreaction was weak allowing the large field to grow quickly to full strength. Once the large field comes to a certain strength, however, conservation of magnetic helicity will have made the backreaction strong enough to overcome the turbulence and stop further growth of the large field. The large-scale field and the backreaction then keep to a steady equilibrium.

To tease out the exact nature of the backreaction, the team took a new approach to the problem. "Most computer simulations use brute force," Blackman explains. "They take every known variable and crank through them. Such simulations are important because they yield results, but like experiments, you don’t know what variables were responsible for giving you those results without further investigation."

Blackman and Field simplified the problem to pinpoint which variables affected the outcome. They found that only the helical component of the small field contributes to the backreaction, twisting in the opposite direction to that of the large field. Scientists were not sure how strong the backreaction had to be to start influencing the turbulence, but the team has shown that the backreaction is weak when the large-scale field is weak, having little effect on the turbulence. It’s not until the large field grows quite strong that the backreaction grows strong as well and begins to suppress the motions of matter, stopping the further growth of the overarching magnetic field.

The simple theory will likely be able to explain how magnetic fields evolve in stars like our sun, whole galaxies, and even gamma-ray bursts-the most powerful bursts of energy ever seen in the universe. Scientists suspect that gamma-ray bursts use powerful magnetic fields to catapult intense outflows into space. In addition, the theory explains the ordered magnetic structures that emerge in advanced "brute force" computational experiments by Axel Brandenburg, professor at the Nordic Institute for Theoretical Astrophysics, and by Jason Maron, postdoctoral fellow at the University of Rochester. Blackman is now collaborating with both scientists to further explore the consequences of the theory.

This research was funded by the U.S. Department of Energy.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/pr/News/NewsReleases/scitech/blackman-galactic.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>