Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of Galaxy-Spanning Magnetic Fields Explained

10.01.2003


Researchers at the University of Rochester have uncovered how giant magnetic fields up to a billion, billion miles across, such as the one that envelopes our galaxy, are able to take shape despite a mystery that suggested they should collapse almost before they’d begun to form. Astrophysicists have long believed that as these large magnetic fields grow, opposing small-scale fields should grow more quickly, thwarting the evolution of any giant magnetic field. The team discovered instead that the simple motion of gas can fight against those small-scale fields long enough for the large fields to form. The results are published in a recent issue of Physical Review Letters.



"Understanding exactly how these large-scale fields form has been a problem for astrophysicists for a long time," says Eric Blackman, assistant professor of physics and astronomy. "For almost 50 years the standard approaches have been plagued by a fundamental mystery that we have now resolved."

The mechanism, called a dynamo, that creates the large-scale field twists up the magnetic field lines as if they were elastic ribbons embedded in the sun, galaxy or other celestial object. Turbulence kicked up by shifting gas, supernovae, or nearly any kind of random movement of matter, combined with the fact that the star or galaxy is spinning carries these ribbons outward toward the edges. As they expand outward they slow like a spinning skater extending her arms and the resulting speed difference causes the ribbons to twist up into a large helix, creating the overall orderly structure of the field.


The turbulence that creates the large-scale field, however, also creates opposing small-scale fields due to the principle of conservation of magnetic helicity. As both large and small fields get stronger, they start to suppress the turbulence that gave rise to them. This is called a "backreaction," and researchers have long suspected that it might halt the growth of the large field long before it reached the strength we see in the universe today. Blackman and George Field, the Robert Wheeler Wilson Professor of Applied Astronomy at Harvard University, found that in the early stages the backreaction was weak allowing the large field to grow quickly to full strength. Once the large field comes to a certain strength, however, conservation of magnetic helicity will have made the backreaction strong enough to overcome the turbulence and stop further growth of the large field. The large-scale field and the backreaction then keep to a steady equilibrium.

To tease out the exact nature of the backreaction, the team took a new approach to the problem. "Most computer simulations use brute force," Blackman explains. "They take every known variable and crank through them. Such simulations are important because they yield results, but like experiments, you don’t know what variables were responsible for giving you those results without further investigation."

Blackman and Field simplified the problem to pinpoint which variables affected the outcome. They found that only the helical component of the small field contributes to the backreaction, twisting in the opposite direction to that of the large field. Scientists were not sure how strong the backreaction had to be to start influencing the turbulence, but the team has shown that the backreaction is weak when the large-scale field is weak, having little effect on the turbulence. It’s not until the large field grows quite strong that the backreaction grows strong as well and begins to suppress the motions of matter, stopping the further growth of the overarching magnetic field.

The simple theory will likely be able to explain how magnetic fields evolve in stars like our sun, whole galaxies, and even gamma-ray bursts-the most powerful bursts of energy ever seen in the universe. Scientists suspect that gamma-ray bursts use powerful magnetic fields to catapult intense outflows into space. In addition, the theory explains the ordered magnetic structures that emerge in advanced "brute force" computational experiments by Axel Brandenburg, professor at the Nordic Institute for Theoretical Astrophysics, and by Jason Maron, postdoctoral fellow at the University of Rochester. Blackman is now collaborating with both scientists to further explore the consequences of the theory.

This research was funded by the U.S. Department of Energy.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/pr/News/NewsReleases/scitech/blackman-galactic.html

More articles from Physics and Astronomy:

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>