Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of Galaxy-Spanning Magnetic Fields Explained

10.01.2003


Researchers at the University of Rochester have uncovered how giant magnetic fields up to a billion, billion miles across, such as the one that envelopes our galaxy, are able to take shape despite a mystery that suggested they should collapse almost before they’d begun to form. Astrophysicists have long believed that as these large magnetic fields grow, opposing small-scale fields should grow more quickly, thwarting the evolution of any giant magnetic field. The team discovered instead that the simple motion of gas can fight against those small-scale fields long enough for the large fields to form. The results are published in a recent issue of Physical Review Letters.



"Understanding exactly how these large-scale fields form has been a problem for astrophysicists for a long time," says Eric Blackman, assistant professor of physics and astronomy. "For almost 50 years the standard approaches have been plagued by a fundamental mystery that we have now resolved."

The mechanism, called a dynamo, that creates the large-scale field twists up the magnetic field lines as if they were elastic ribbons embedded in the sun, galaxy or other celestial object. Turbulence kicked up by shifting gas, supernovae, or nearly any kind of random movement of matter, combined with the fact that the star or galaxy is spinning carries these ribbons outward toward the edges. As they expand outward they slow like a spinning skater extending her arms and the resulting speed difference causes the ribbons to twist up into a large helix, creating the overall orderly structure of the field.


The turbulence that creates the large-scale field, however, also creates opposing small-scale fields due to the principle of conservation of magnetic helicity. As both large and small fields get stronger, they start to suppress the turbulence that gave rise to them. This is called a "backreaction," and researchers have long suspected that it might halt the growth of the large field long before it reached the strength we see in the universe today. Blackman and George Field, the Robert Wheeler Wilson Professor of Applied Astronomy at Harvard University, found that in the early stages the backreaction was weak allowing the large field to grow quickly to full strength. Once the large field comes to a certain strength, however, conservation of magnetic helicity will have made the backreaction strong enough to overcome the turbulence and stop further growth of the large field. The large-scale field and the backreaction then keep to a steady equilibrium.

To tease out the exact nature of the backreaction, the team took a new approach to the problem. "Most computer simulations use brute force," Blackman explains. "They take every known variable and crank through them. Such simulations are important because they yield results, but like experiments, you don’t know what variables were responsible for giving you those results without further investigation."

Blackman and Field simplified the problem to pinpoint which variables affected the outcome. They found that only the helical component of the small field contributes to the backreaction, twisting in the opposite direction to that of the large field. Scientists were not sure how strong the backreaction had to be to start influencing the turbulence, but the team has shown that the backreaction is weak when the large-scale field is weak, having little effect on the turbulence. It’s not until the large field grows quite strong that the backreaction grows strong as well and begins to suppress the motions of matter, stopping the further growth of the overarching magnetic field.

The simple theory will likely be able to explain how magnetic fields evolve in stars like our sun, whole galaxies, and even gamma-ray bursts-the most powerful bursts of energy ever seen in the universe. Scientists suspect that gamma-ray bursts use powerful magnetic fields to catapult intense outflows into space. In addition, the theory explains the ordered magnetic structures that emerge in advanced "brute force" computational experiments by Axel Brandenburg, professor at the Nordic Institute for Theoretical Astrophysics, and by Jason Maron, postdoctoral fellow at the University of Rochester. Blackman is now collaborating with both scientists to further explore the consequences of the theory.

This research was funded by the U.S. Department of Energy.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/pr/News/NewsReleases/scitech/blackman-galactic.html

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>