Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Evolution of Galaxy-Spanning Magnetic Fields Explained


Researchers at the University of Rochester have uncovered how giant magnetic fields up to a billion, billion miles across, such as the one that envelopes our galaxy, are able to take shape despite a mystery that suggested they should collapse almost before they’d begun to form. Astrophysicists have long believed that as these large magnetic fields grow, opposing small-scale fields should grow more quickly, thwarting the evolution of any giant magnetic field. The team discovered instead that the simple motion of gas can fight against those small-scale fields long enough for the large fields to form. The results are published in a recent issue of Physical Review Letters.

"Understanding exactly how these large-scale fields form has been a problem for astrophysicists for a long time," says Eric Blackman, assistant professor of physics and astronomy. "For almost 50 years the standard approaches have been plagued by a fundamental mystery that we have now resolved."

The mechanism, called a dynamo, that creates the large-scale field twists up the magnetic field lines as if they were elastic ribbons embedded in the sun, galaxy or other celestial object. Turbulence kicked up by shifting gas, supernovae, or nearly any kind of random movement of matter, combined with the fact that the star or galaxy is spinning carries these ribbons outward toward the edges. As they expand outward they slow like a spinning skater extending her arms and the resulting speed difference causes the ribbons to twist up into a large helix, creating the overall orderly structure of the field.

The turbulence that creates the large-scale field, however, also creates opposing small-scale fields due to the principle of conservation of magnetic helicity. As both large and small fields get stronger, they start to suppress the turbulence that gave rise to them. This is called a "backreaction," and researchers have long suspected that it might halt the growth of the large field long before it reached the strength we see in the universe today. Blackman and George Field, the Robert Wheeler Wilson Professor of Applied Astronomy at Harvard University, found that in the early stages the backreaction was weak allowing the large field to grow quickly to full strength. Once the large field comes to a certain strength, however, conservation of magnetic helicity will have made the backreaction strong enough to overcome the turbulence and stop further growth of the large field. The large-scale field and the backreaction then keep to a steady equilibrium.

To tease out the exact nature of the backreaction, the team took a new approach to the problem. "Most computer simulations use brute force," Blackman explains. "They take every known variable and crank through them. Such simulations are important because they yield results, but like experiments, you don’t know what variables were responsible for giving you those results without further investigation."

Blackman and Field simplified the problem to pinpoint which variables affected the outcome. They found that only the helical component of the small field contributes to the backreaction, twisting in the opposite direction to that of the large field. Scientists were not sure how strong the backreaction had to be to start influencing the turbulence, but the team has shown that the backreaction is weak when the large-scale field is weak, having little effect on the turbulence. It’s not until the large field grows quite strong that the backreaction grows strong as well and begins to suppress the motions of matter, stopping the further growth of the overarching magnetic field.

The simple theory will likely be able to explain how magnetic fields evolve in stars like our sun, whole galaxies, and even gamma-ray bursts-the most powerful bursts of energy ever seen in the universe. Scientists suspect that gamma-ray bursts use powerful magnetic fields to catapult intense outflows into space. In addition, the theory explains the ordered magnetic structures that emerge in advanced "brute force" computational experiments by Axel Brandenburg, professor at the Nordic Institute for Theoretical Astrophysics, and by Jason Maron, postdoctoral fellow at the University of Rochester. Blackman is now collaborating with both scientists to further explore the consequences of the theory.

This research was funded by the U.S. Department of Energy.

Jonathan Sherwood | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>