Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black holes form first, galaxies follow: new quasar study

09.01.2003


A study at Ohio State University has uncovered more evidence that black holes form before the galaxies that contain them.


Artist’s rendering of a black hole in a globular cluster. Photo courtesy NASA and G. Bacon, Space Telescope Science Institute.


Marianne Vestergaard



The finding could help resolve a long-standing debate, said Marianne Vestergaard, a postdoctoral fellow in astronomy at Ohio State.

Vestergaard came to this conclusion when she studied a collection of very energetic, active galaxies known as quasars as they appeared some 12 billion years ago, when the universe was only one billion years old. While the quasars were obviously young -- they contained large stellar nurseries in which new stars were forming -- each also contained a very massive, fully formed black hole.


More and more, black holes are being found at the center of galaxies. As the close relationship between black holes and galaxies has emerged, astronomers have debated which of the two came first.

One model holds that mass builds up at the center of galaxies, eventually collapsing so black holes can form. Another holds the opposite -- that black holes exist first, and their immense gravity draws gas, dust, and stars together, causing galaxies to form.

Looking at this evidence, I have to think that black holes start forming before galaxies do, or form at a much faster rate, or both, Vestergaard said. She described her study January 8 at the American Astronomical Society meeting in Seattle.

One year ago, Vestergaard announced that she had developed a new method for estimating the mass of very distant black holes, ones that existed far in the past. The method involves comparing the spectrum of light emitted by the quasars that host the black holes to spectra from quasars existing today.

Astronomers consider a galaxy active when it emits much more energy from its nucleus than can be accounted for by its stars alone. This radiation is detected at wavelengths that span from radio waves to X-rays, Vestergaard explained.

Quasars are the most energetic of the active galaxies, from which all the energy spills out of a very small region at the center, equal to about one-millionth of the diameter of the total galaxy. It is in these central regions that black holes reside.

For this latest study, Vestergaard used her method to examine a special set of distant quasars. Part of her data came from the Sloan Digital Sky Survey, a collaborative project that maps the universe from Apache Point Observatory in New Mexico. She compared the spectra from those quasars to other quasars that are closer to Earth, including ones documented by the Bright Quasar Survey.

In the several hundred quasars she studied, a pattern emerged: even the smallest, most quiescent of these active galaxies contained a massive black hole, on the order of 100 million times more massive than our sun.

Theoretically, the black holes should have taken a long time to grow that big, if they started out as small seed black holes and grew by accretion alone; yet, their host galaxies showed ample signs of youth, such as intense star formation, copious amounts of molecular gas and significant dust production.

This information could help astronomers better understand active galaxies, as well as more typical inactive galaxies such as our own.

All these issues are intertwined -- the powering of the central engine of an active galaxy, the forming of black holes, the forming of galaxies, she said.

She added that future developments in this area will depend on KRONOS, a satellite proposed to NASA by Bradley Peterson, professor of astronomy at Ohio State, and his partners from around the world. KRONOS will be able to image material spiraling into black holes with a resolution 10,000 times finer than now possible with the Hubble Space Telescope.

For instance, how fast do black holes grow? Do they grow only by accumulating matter from around themselves, or do they also need some cataclysmic trigger event, such as when two galaxies collide? We need deep surveys of the universe to answer these questions, Vestergaard said.

Other pieces of the puzzle will come from researchers such as Ohio State graduate student Adam Steed, who is working with astronomy professor David Weinberg to model black hole growth.

If we could construct a complete model of what happens to a black hole over its lifetime, we could look at real black holes from different points in the past, and see whether our model is consistent, Vestergaard said. That would be really exciting, and we would understand more about what is happening in the universe today.

Vestergaard remains optimistic that astronomers can conquer these hurdles in the near future.

I never thought we would come to a day in my lifetime when we could measure the mass of such distant black holes, she said. But here we are.


Marianne Vestergaard, (614) 292-5807; Vestergaard.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Marianne Vestergaard | EurekAlert!
Further information:
http://www.osu.edu/researchnews/archive/bhfirst.htm

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>