Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black holes form first, galaxies follow: new quasar study

09.01.2003


A study at Ohio State University has uncovered more evidence that black holes form before the galaxies that contain them.


Artist’s rendering of a black hole in a globular cluster. Photo courtesy NASA and G. Bacon, Space Telescope Science Institute.


Marianne Vestergaard



The finding could help resolve a long-standing debate, said Marianne Vestergaard, a postdoctoral fellow in astronomy at Ohio State.

Vestergaard came to this conclusion when she studied a collection of very energetic, active galaxies known as quasars as they appeared some 12 billion years ago, when the universe was only one billion years old. While the quasars were obviously young -- they contained large stellar nurseries in which new stars were forming -- each also contained a very massive, fully formed black hole.


More and more, black holes are being found at the center of galaxies. As the close relationship between black holes and galaxies has emerged, astronomers have debated which of the two came first.

One model holds that mass builds up at the center of galaxies, eventually collapsing so black holes can form. Another holds the opposite -- that black holes exist first, and their immense gravity draws gas, dust, and stars together, causing galaxies to form.

Looking at this evidence, I have to think that black holes start forming before galaxies do, or form at a much faster rate, or both, Vestergaard said. She described her study January 8 at the American Astronomical Society meeting in Seattle.

One year ago, Vestergaard announced that she had developed a new method for estimating the mass of very distant black holes, ones that existed far in the past. The method involves comparing the spectrum of light emitted by the quasars that host the black holes to spectra from quasars existing today.

Astronomers consider a galaxy active when it emits much more energy from its nucleus than can be accounted for by its stars alone. This radiation is detected at wavelengths that span from radio waves to X-rays, Vestergaard explained.

Quasars are the most energetic of the active galaxies, from which all the energy spills out of a very small region at the center, equal to about one-millionth of the diameter of the total galaxy. It is in these central regions that black holes reside.

For this latest study, Vestergaard used her method to examine a special set of distant quasars. Part of her data came from the Sloan Digital Sky Survey, a collaborative project that maps the universe from Apache Point Observatory in New Mexico. She compared the spectra from those quasars to other quasars that are closer to Earth, including ones documented by the Bright Quasar Survey.

In the several hundred quasars she studied, a pattern emerged: even the smallest, most quiescent of these active galaxies contained a massive black hole, on the order of 100 million times more massive than our sun.

Theoretically, the black holes should have taken a long time to grow that big, if they started out as small seed black holes and grew by accretion alone; yet, their host galaxies showed ample signs of youth, such as intense star formation, copious amounts of molecular gas and significant dust production.

This information could help astronomers better understand active galaxies, as well as more typical inactive galaxies such as our own.

All these issues are intertwined -- the powering of the central engine of an active galaxy, the forming of black holes, the forming of galaxies, she said.

She added that future developments in this area will depend on KRONOS, a satellite proposed to NASA by Bradley Peterson, professor of astronomy at Ohio State, and his partners from around the world. KRONOS will be able to image material spiraling into black holes with a resolution 10,000 times finer than now possible with the Hubble Space Telescope.

For instance, how fast do black holes grow? Do they grow only by accumulating matter from around themselves, or do they also need some cataclysmic trigger event, such as when two galaxies collide? We need deep surveys of the universe to answer these questions, Vestergaard said.

Other pieces of the puzzle will come from researchers such as Ohio State graduate student Adam Steed, who is working with astronomy professor David Weinberg to model black hole growth.

If we could construct a complete model of what happens to a black hole over its lifetime, we could look at real black holes from different points in the past, and see whether our model is consistent, Vestergaard said. That would be really exciting, and we would understand more about what is happening in the universe today.

Vestergaard remains optimistic that astronomers can conquer these hurdles in the near future.

I never thought we would come to a day in my lifetime when we could measure the mass of such distant black holes, she said. But here we are.


Marianne Vestergaard, (614) 292-5807; Vestergaard.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Marianne Vestergaard | EurekAlert!
Further information:
http://www.osu.edu/researchnews/archive/bhfirst.htm

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>