Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammoth project reveals frozen secrets

09.01.2003


Which way does a mammoth skeleton point in Siberia? No, it’s not a Christmas cracker joke. To find the answer you have to look in a rather surprising place – the Institute of Physics’ new online archive.


Jerry Cowhig, Managing Director of Institute of Physics Publishing and Professor Kathy Sykes, Collier chair of public engagement of science and engineering at Bristol University, are searching the online IOP Journal Archive. Every journal article published by the Institute of Physics since 1874 is now available to subscribers



In an article published in the first edition of Proceedings of the Physical Society in 1874, John Rae writes about the physical properties of ice and mammoth remains. He put forward a theory as to why so many of the mammoth skeletons found near the Yenesei river in Siberia had been found with their heads pointing southwards. He said that if these mammoths died in or near the river, their bodies would get swept down the river to the shallow area near the mouth. The mammoth’s head, weighed down by its tusks and skull, would drag along the bottom and in shallow water the body would still float with the current – in a similar way to a boat pulling on an anchor. When the river froze in winter, the mammoths would become frozen in this position – with their heads pointing southwards with the flow. As this river flows from south to north, the heads would be pointing southwards when they froze.

This fascinating article can be accessed for the first time on the World Wide Web on the IOP Journal Archive. Every journal article published by the Institute of Physics since 1874 is now available to subscribers – that is over 500 volume-years of journals, over 100,000 articles and over one million pages of scientific research.


“This was a massive project, and it will significantly benefit research in physics and maintains our long tradition of innovation in electronic publishing,” said Jerry Cowhig, Managing Director of Institute of Physics Publishing.

Articles by many pioneering physicists can be found in the archive, including some by William and Lawrence Bragg. This father and son team shared a Nobel Prize for their work on x-ray crystallography, which was the method used in the discovery of the structure of DNA.

“This is a great resource for anyone with an interest in physics or its history. You can read original articles by physicists like Schrödinger, who you usually only read about in text books,” said Professor Kathy Sykes, Collier chair of public engagement of science and engineering at Bristol University.

Non-subscribers can search the archive, and view the abstracts of the papers. To access the full paper, a paid subscription is needed.

Michelle Cain | alfa
Further information:
http://www.iop.org/EJ
http://physics.iop.org/IOP/Press/prlist.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>