Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing link found between old and young star clusters

08.01.2003


One and a half billion years ago the small, inconspicuous galaxy Messier 82 (M82) almost smashed into its large, massive neighbour galaxy Messier 81 (M81), causing a frenzy of star formation.



New research by astronomers from the Universities of Cambridge and Utrecht, Netherlands, has now discovered an elusive phenomenon in this violent "starburst" area. About 100 star clusters have been discovered that are believed to be the ancestors of the so-called "globular clusters" thought to be the oldest building blocks of galaxies.

"Such an intermediate-age population of massive, compact star clusters has been searched for extensively, but unsuccessfully until now," said Dr Richard de Grijs from the University of Cambridge’s Institute of Astronomy, and lead scientist on the project. "The fact that we have finally found such a population is evidence that formation of long-lived star clusters is indeed happening now, just as it has in the early Universe and ever since."


Dr de Grijs and his colleagues Henny Lamers and Nate Bastian, using images of M82 from the Hubble Space Telescope, found a population of about 100 star clusters aged 1.5 billion years. This is half-way down its evolution to old age - it is thought the star clusters could survive the next 10 billion years.

M82, which is 11 million light years away, is the closest starburst galaxy to Earth and is close enough to allow Hubble to see many individual star clusters.

During M82’s collision with its neighbouring galaxy, M81, the interstellar gas clouds were strongly compressed because of gravitational effects of the mass of M81, causing intense star formation activity.

Such strong starbursts have not occurred in our Milky Way galaxy for billions of years and none, until this discovery, have yet evolved sufficiently far.

"Clusters are disrupted much faster in M82 than here," said Dr de Grijs. "This is probably another after-effect of the near collision with M81. M82 has a more disturbed appearance than other nearby, well-behaved galaxies because of the more inhomogeneous distribution of interstellar gas in the galaxy caused by the near collision."

Stars are most often born in large clusters, originating from gas clouds that collapse due to their self-gravitation.

Astronomers have found thousands of star clusters in and around our Milky Way galaxy, and the populations of star clusters in neighbouring galaxies have been charted extensively as well.

Since all stars in a cluster - ranging from 1000 up to a million or more - are born more or less simultaneously, a cluster’s age can be determined fairly accurately; star clusters can therefore be used as astronomical "clocks", tracing the events that created them.

The most ancient clusters in our Milky Way galaxy - so-called "globular clusters" - are about 12 billion years old, older than the Milky Way in its present form. These globular clusters have always been considered the oldest building blocks of galaxies.

The majority of galaxies go through epochs in which the rate of star formation rises explosively, a so-called starburst. Such epochs can be traced back through the ages of star clusters: entire populations of star clusters of roughly similar age are found to form during such starburst events.

However, a strange anomaly persisted in the observations: both young, unevolved and old, fully evolved star cluster populations were known - and such populations continue to be detected routinely - but clusters half-way on that career track were missing.

This anomaly gave credibility to the theory that cluster formation in the early Universe was fundamentally different from that at present.

However, since cluster formation is closely associated with the formation and evolution of stars and galaxies in general, fundamental doubts about the evolution of the Universe as a whole were raised.

The research team consists of: Dr Richard de Grijs, Institute of Astronomy, University of Cambridge Professor Henny Lamers and Mr. Nate Bastian, Astronomical Institute, Utrecht University, The Netherlands. This research will be published in The Astrophysical Journal (Letters) of 20 January 2003.

Laura Morgan | alfa

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>