Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing link found between old and young star clusters

08.01.2003


One and a half billion years ago the small, inconspicuous galaxy Messier 82 (M82) almost smashed into its large, massive neighbour galaxy Messier 81 (M81), causing a frenzy of star formation.



New research by astronomers from the Universities of Cambridge and Utrecht, Netherlands, has now discovered an elusive phenomenon in this violent "starburst" area. About 100 star clusters have been discovered that are believed to be the ancestors of the so-called "globular clusters" thought to be the oldest building blocks of galaxies.

"Such an intermediate-age population of massive, compact star clusters has been searched for extensively, but unsuccessfully until now," said Dr Richard de Grijs from the University of Cambridge’s Institute of Astronomy, and lead scientist on the project. "The fact that we have finally found such a population is evidence that formation of long-lived star clusters is indeed happening now, just as it has in the early Universe and ever since."


Dr de Grijs and his colleagues Henny Lamers and Nate Bastian, using images of M82 from the Hubble Space Telescope, found a population of about 100 star clusters aged 1.5 billion years. This is half-way down its evolution to old age - it is thought the star clusters could survive the next 10 billion years.

M82, which is 11 million light years away, is the closest starburst galaxy to Earth and is close enough to allow Hubble to see many individual star clusters.

During M82’s collision with its neighbouring galaxy, M81, the interstellar gas clouds were strongly compressed because of gravitational effects of the mass of M81, causing intense star formation activity.

Such strong starbursts have not occurred in our Milky Way galaxy for billions of years and none, until this discovery, have yet evolved sufficiently far.

"Clusters are disrupted much faster in M82 than here," said Dr de Grijs. "This is probably another after-effect of the near collision with M81. M82 has a more disturbed appearance than other nearby, well-behaved galaxies because of the more inhomogeneous distribution of interstellar gas in the galaxy caused by the near collision."

Stars are most often born in large clusters, originating from gas clouds that collapse due to their self-gravitation.

Astronomers have found thousands of star clusters in and around our Milky Way galaxy, and the populations of star clusters in neighbouring galaxies have been charted extensively as well.

Since all stars in a cluster - ranging from 1000 up to a million or more - are born more or less simultaneously, a cluster’s age can be determined fairly accurately; star clusters can therefore be used as astronomical "clocks", tracing the events that created them.

The most ancient clusters in our Milky Way galaxy - so-called "globular clusters" - are about 12 billion years old, older than the Milky Way in its present form. These globular clusters have always been considered the oldest building blocks of galaxies.

The majority of galaxies go through epochs in which the rate of star formation rises explosively, a so-called starburst. Such epochs can be traced back through the ages of star clusters: entire populations of star clusters of roughly similar age are found to form during such starburst events.

However, a strange anomaly persisted in the observations: both young, unevolved and old, fully evolved star cluster populations were known - and such populations continue to be detected routinely - but clusters half-way on that career track were missing.

This anomaly gave credibility to the theory that cluster formation in the early Universe was fundamentally different from that at present.

However, since cluster formation is closely associated with the formation and evolution of stars and galaxies in general, fundamental doubts about the evolution of the Universe as a whole were raised.

The research team consists of: Dr Richard de Grijs, Institute of Astronomy, University of Cambridge Professor Henny Lamers and Mr. Nate Bastian, Astronomical Institute, Utrecht University, The Netherlands. This research will be published in The Astrophysical Journal (Letters) of 20 January 2003.

Laura Morgan | alfa

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>