Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coronal activity may be ’buried alive’ in red giant stars, say Colorado researchers

08.01.2003


When Earth’s sun expands into a red giant star in roughly five billion years, long after Earth has become uninhabitable, the hydrogen core will be burned out and the bloated outer shell will be cool and murky.



But according to new research by the University of Colorado at Boulder, such red giants still retain surface magnetic storms and coronas -- the very hot and patchy outer atmosphere of the sun and sun-like stars -- at temperatures of millions of degrees Fahrenheit that often signal stellar youth.

The red giant coronal regions, however, appear to be submerged in the extended outer shell known as the chromosphere, "buried alive" in these red giants.


Low-mass stars like the sun begin their lives as fast-spinning dwarfs exhibiting high levels of magnetic activity including giant solar flares that could affect early life on planets like Earth, said Professor Tom Ayres of the astrophysical and planetary sciences department. As sun-like stars age and ultimately expand into red giants, the rotation slows or even stops, he said.

"Rotation is thought to be a key ingredient in the coronal magnetic activity," said Ayres. "Once the rotation halts, the surface magnetic storms should cease."

In 1990, scientists proposed these red giant stars were a coronal graveyard, said Ayres. "But new evidence, surprisingly, indicates that there probably still is coronal activity buried beneath the murky atmospheres of these dying stars."

The submerged violent activity may be tied to the remarkable winds that blow off red giant stars, said Ayres. "These mysterious winds travel at a mind-boggling 100,000 miles per hour and are so strong they literally blow away much of the stellar ’outer envelope’ during the terminal phases of the star’s life."

The team imaged two bright stars, Arcturus and Aldebaran, thought to have been very sun-like until their evolution into red giants millions of years ago. They used NASA’s powerful Chandra X-Ray Orbiting Observatory, ultraviolet instruments on the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer, or FUSE.

"We indirectly detected the presence of hot coronal gas through UV emissions of highly charged carbon and oxygen detected by FUSE," he said. "Apparently magnetic storms still occur on the surfaces of red giants but do not rise very high into the thick chromosphere of warm gas – about 10,000 F -- that surrounds the cooler layers that measure about 5,000 F."

Ayres said the chromosphere is opaque to X-rays but is more transparent in the UV, allowing the hot emissions from the surface magnetic storms to escape. "With only the X-ray view, we might have thought the magnetic activity in the "coronal graveyard had entirely faded away," he said. "Now, the UV perspective has revealed that the activity is merely ’buried alive’ and that we will have to dig deeper to fully understand the inner workings of these dying stars."


A paper on the subject by Ayres, Alexander Brown and Graham Harper, all research associates at CU-Boulder’s Center for Astrophysics and Space Astronomy, or CASA, was presented at the 201st annual meeting of the American Astronomical Society held in Seattle Jan. 6 to Jan. 12.

The data were obtained from NASA’s Chandra X-Ray Observatory and several other instruments, including FUSE -- which was partly assembled and built at CU-Boulder’s CASA -- and the Hubble Space Telescope. The work was supported by in part by grants from the Smithsonian Astronomical Observatory, the Space Telescope Science Institute in Baltimore and NASA.

Additional Contact:
Jim Scott, (303) 492-3114

Tom Ayres | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Physics and Astronomy:

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

nachricht Filling the early universe with knots can explain why the world is three-dimensional
17.10.2017 | Vanderbilt University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>