Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless Network Boosts Supernova Search to Stellar First Year

08.01.2003


In results presented this week at the 2003 meeting of the American Astronomical Society (AAS) in Seattle, astrophysicist Greg Aldering and colleagues report that their supernova factory project has discovered an unprecedented 34 new supernovae in its first year. The accomplishment would not have been possible without the National Science Foundation (NSF) - supported high performance wireless network link to Palomar Observatory.

"This has been the best rookie year for any supernova search project," Aldering said. The Nearby Supernova Factory, led by Aldering at Lawrence Berkeley National Laboratory (LBNL), is seeking out 300 new exploding stars to be used as standard distance markers in future studies to measure the change in the universe’s rate of expansion and thereby determine its dark energy content.

"We’re completely dependent on the wireless network because we have to sift through huge amounts of images," Aldering said, "and we need those images as soon as possible after they’re seen by the telescope."

The High Performance Wireless Research and Education Network (HPWREN), a project of the University of California, San Diego, provides Caltech’s Palomar Observatory with a high-speed link to the Internet. The link made it possible to amass the quarter million images-six terabytes of compressed data-analyzed by Aldering and the Nearby Supernova Factory team in 2002.

Funded by the National Science Foundation, the federal agency that supports basic science and engineering research and infrastructure, HPWREN makes it possible to send images almost instantly from the 48-inch Oschin Telescope at Palomar’s remote mountaintop site to a storage facility at the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), located at LBNL in Berkeley, CA. Each image is 16 megapixels, and three images are captured every 30 seconds. Fifty gigabytes, or nearly 80 CD-ROMs’ worth, of raw data crosses the HPWREN link nightly.

Thanks to HPWREN, the project is likely to find many more supernovae in subsequent years, allowing the study of rare supernovae with unusual properties, which can better reveal how supernovae work, according to Aldering. The eventual collection of supernovae will be made available to the astronomy community.

"Greg’s supernova findings clearly illustrate the benefits of astronomers and computer network researchers partnering as a team, and we are really pleased to see how much high-performance networks enable our collaborating scientists and educators," said HPWREN principal investigator Hans-Werner Braun of UCSD’s San Diego Supercomputer Center. "We hope to continue our work together and intend to enhance the data communications bandwidth even more, as Greg and others have indicated that they can make even more great discoveries if they have more bandwidth available to them."

The supernova factory pipeline starts with images being collected by the NASA-funded Near-Earth Asteroid Tracking (NEAT) project. The images are sent across the 45-megabit-per-second HPWREN wireless link and on to LBNL, where NERSC’s computers process the images to discover and rank supernova candidates.

Eventually the pipeline will automate the entire discovery and confirmation process. Once a supernova is discovered from the Palomar images, follow-up observations will be obtained by remote control of the University of Hawaii’s 88-inch telescope on Mauna Kea. The Hawaii observations will be shipped by Internet for image processing at a supercomputing center in France and then sent to NERSC for analysis.

"If we can do this quickly enough, we can even ask the Hawaii and Palomar telescopes to get more data, say, for a very rare type of transient object," Aldering said. "This is all supposed to happen automatically while we are asleep, although it will take a while to reach a reliable level of automation."

The HPWREN team, led by Braun and Frank Vernon at the Scripps Institution of Oceanography, is prototyping and evaluating a non-commercial, high-performance, wide-area wireless network. The network includes backbone nodes on the UCSD campus and a number of hard-to-reach areas in San Diego County, including the Palomar and Mt. Laguna observatories, Native American communities, and several remote science field stations.

The poster on the Nearby Supernova Factory will be presented at the AAS meeting in Seattle during Session 56, "Supernovae Potpourri," on Jan. 7, 2003, 9:20 a.m. - 6:30 p.m.

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.



Media contact:
David Hart
(703) 292-8070, dhart@nsf.gov


Program contact:
Tom Greene
(703) 292-8948, tgreene@nsf.gov

Julie A. Smith | NSF
Further information:
http://hpwren.ucsd.edu/
http://snfactory.lbl.gov/
http://neat.jpl.nasa.gov/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>