Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless Network Boosts Supernova Search to Stellar First Year

08.01.2003


In results presented this week at the 2003 meeting of the American Astronomical Society (AAS) in Seattle, astrophysicist Greg Aldering and colleagues report that their supernova factory project has discovered an unprecedented 34 new supernovae in its first year. The accomplishment would not have been possible without the National Science Foundation (NSF) - supported high performance wireless network link to Palomar Observatory.

"This has been the best rookie year for any supernova search project," Aldering said. The Nearby Supernova Factory, led by Aldering at Lawrence Berkeley National Laboratory (LBNL), is seeking out 300 new exploding stars to be used as standard distance markers in future studies to measure the change in the universe’s rate of expansion and thereby determine its dark energy content.

"We’re completely dependent on the wireless network because we have to sift through huge amounts of images," Aldering said, "and we need those images as soon as possible after they’re seen by the telescope."

The High Performance Wireless Research and Education Network (HPWREN), a project of the University of California, San Diego, provides Caltech’s Palomar Observatory with a high-speed link to the Internet. The link made it possible to amass the quarter million images-six terabytes of compressed data-analyzed by Aldering and the Nearby Supernova Factory team in 2002.

Funded by the National Science Foundation, the federal agency that supports basic science and engineering research and infrastructure, HPWREN makes it possible to send images almost instantly from the 48-inch Oschin Telescope at Palomar’s remote mountaintop site to a storage facility at the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), located at LBNL in Berkeley, CA. Each image is 16 megapixels, and three images are captured every 30 seconds. Fifty gigabytes, or nearly 80 CD-ROMs’ worth, of raw data crosses the HPWREN link nightly.

Thanks to HPWREN, the project is likely to find many more supernovae in subsequent years, allowing the study of rare supernovae with unusual properties, which can better reveal how supernovae work, according to Aldering. The eventual collection of supernovae will be made available to the astronomy community.

"Greg’s supernova findings clearly illustrate the benefits of astronomers and computer network researchers partnering as a team, and we are really pleased to see how much high-performance networks enable our collaborating scientists and educators," said HPWREN principal investigator Hans-Werner Braun of UCSD’s San Diego Supercomputer Center. "We hope to continue our work together and intend to enhance the data communications bandwidth even more, as Greg and others have indicated that they can make even more great discoveries if they have more bandwidth available to them."

The supernova factory pipeline starts with images being collected by the NASA-funded Near-Earth Asteroid Tracking (NEAT) project. The images are sent across the 45-megabit-per-second HPWREN wireless link and on to LBNL, where NERSC’s computers process the images to discover and rank supernova candidates.

Eventually the pipeline will automate the entire discovery and confirmation process. Once a supernova is discovered from the Palomar images, follow-up observations will be obtained by remote control of the University of Hawaii’s 88-inch telescope on Mauna Kea. The Hawaii observations will be shipped by Internet for image processing at a supercomputing center in France and then sent to NERSC for analysis.

"If we can do this quickly enough, we can even ask the Hawaii and Palomar telescopes to get more data, say, for a very rare type of transient object," Aldering said. "This is all supposed to happen automatically while we are asleep, although it will take a while to reach a reliable level of automation."

The HPWREN team, led by Braun and Frank Vernon at the Scripps Institution of Oceanography, is prototyping and evaluating a non-commercial, high-performance, wide-area wireless network. The network includes backbone nodes on the UCSD campus and a number of hard-to-reach areas in San Diego County, including the Palomar and Mt. Laguna observatories, Native American communities, and several remote science field stations.

The poster on the Nearby Supernova Factory will be presented at the AAS meeting in Seattle during Session 56, "Supernovae Potpourri," on Jan. 7, 2003, 9:20 a.m. - 6:30 p.m.

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.



Media contact:
David Hart
(703) 292-8070, dhart@nsf.gov


Program contact:
Tom Greene
(703) 292-8948, tgreene@nsf.gov

Julie A. Smith | NSF
Further information:
http://hpwren.ucsd.edu/
http://snfactory.lbl.gov/
http://neat.jpl.nasa.gov/

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>