Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless Network Boosts Supernova Search to Stellar First Year

08.01.2003


In results presented this week at the 2003 meeting of the American Astronomical Society (AAS) in Seattle, astrophysicist Greg Aldering and colleagues report that their supernova factory project has discovered an unprecedented 34 new supernovae in its first year. The accomplishment would not have been possible without the National Science Foundation (NSF) - supported high performance wireless network link to Palomar Observatory.

"This has been the best rookie year for any supernova search project," Aldering said. The Nearby Supernova Factory, led by Aldering at Lawrence Berkeley National Laboratory (LBNL), is seeking out 300 new exploding stars to be used as standard distance markers in future studies to measure the change in the universe’s rate of expansion and thereby determine its dark energy content.

"We’re completely dependent on the wireless network because we have to sift through huge amounts of images," Aldering said, "and we need those images as soon as possible after they’re seen by the telescope."

The High Performance Wireless Research and Education Network (HPWREN), a project of the University of California, San Diego, provides Caltech’s Palomar Observatory with a high-speed link to the Internet. The link made it possible to amass the quarter million images-six terabytes of compressed data-analyzed by Aldering and the Nearby Supernova Factory team in 2002.

Funded by the National Science Foundation, the federal agency that supports basic science and engineering research and infrastructure, HPWREN makes it possible to send images almost instantly from the 48-inch Oschin Telescope at Palomar’s remote mountaintop site to a storage facility at the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), located at LBNL in Berkeley, CA. Each image is 16 megapixels, and three images are captured every 30 seconds. Fifty gigabytes, or nearly 80 CD-ROMs’ worth, of raw data crosses the HPWREN link nightly.

Thanks to HPWREN, the project is likely to find many more supernovae in subsequent years, allowing the study of rare supernovae with unusual properties, which can better reveal how supernovae work, according to Aldering. The eventual collection of supernovae will be made available to the astronomy community.

"Greg’s supernova findings clearly illustrate the benefits of astronomers and computer network researchers partnering as a team, and we are really pleased to see how much high-performance networks enable our collaborating scientists and educators," said HPWREN principal investigator Hans-Werner Braun of UCSD’s San Diego Supercomputer Center. "We hope to continue our work together and intend to enhance the data communications bandwidth even more, as Greg and others have indicated that they can make even more great discoveries if they have more bandwidth available to them."

The supernova factory pipeline starts with images being collected by the NASA-funded Near-Earth Asteroid Tracking (NEAT) project. The images are sent across the 45-megabit-per-second HPWREN wireless link and on to LBNL, where NERSC’s computers process the images to discover and rank supernova candidates.

Eventually the pipeline will automate the entire discovery and confirmation process. Once a supernova is discovered from the Palomar images, follow-up observations will be obtained by remote control of the University of Hawaii’s 88-inch telescope on Mauna Kea. The Hawaii observations will be shipped by Internet for image processing at a supercomputing center in France and then sent to NERSC for analysis.

"If we can do this quickly enough, we can even ask the Hawaii and Palomar telescopes to get more data, say, for a very rare type of transient object," Aldering said. "This is all supposed to happen automatically while we are asleep, although it will take a while to reach a reliable level of automation."

The HPWREN team, led by Braun and Frank Vernon at the Scripps Institution of Oceanography, is prototyping and evaluating a non-commercial, high-performance, wide-area wireless network. The network includes backbone nodes on the UCSD campus and a number of hard-to-reach areas in San Diego County, including the Palomar and Mt. Laguna observatories, Native American communities, and several remote science field stations.

The poster on the Nearby Supernova Factory will be presented at the AAS meeting in Seattle during Session 56, "Supernovae Potpourri," on Jan. 7, 2003, 9:20 a.m. - 6:30 p.m.

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.



Media contact:
David Hart
(703) 292-8070, dhart@nsf.gov


Program contact:
Tom Greene
(703) 292-8948, tgreene@nsf.gov

Julie A. Smith | NSF
Further information:
http://hpwren.ucsd.edu/
http://snfactory.lbl.gov/
http://neat.jpl.nasa.gov/

More articles from Physics and Astronomy:

nachricht Artificial Intelligence Helps in the Discovery of New Materials
21.09.2016 | Universität Basel

nachricht Magnetic polaron imaged for the first time
19.09.2016 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>