Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless Network Boosts Supernova Search to Stellar First Year

08.01.2003


In results presented this week at the 2003 meeting of the American Astronomical Society (AAS) in Seattle, astrophysicist Greg Aldering and colleagues report that their supernova factory project has discovered an unprecedented 34 new supernovae in its first year. The accomplishment would not have been possible without the National Science Foundation (NSF) - supported high performance wireless network link to Palomar Observatory.

"This has been the best rookie year for any supernova search project," Aldering said. The Nearby Supernova Factory, led by Aldering at Lawrence Berkeley National Laboratory (LBNL), is seeking out 300 new exploding stars to be used as standard distance markers in future studies to measure the change in the universe’s rate of expansion and thereby determine its dark energy content.

"We’re completely dependent on the wireless network because we have to sift through huge amounts of images," Aldering said, "and we need those images as soon as possible after they’re seen by the telescope."

The High Performance Wireless Research and Education Network (HPWREN), a project of the University of California, San Diego, provides Caltech’s Palomar Observatory with a high-speed link to the Internet. The link made it possible to amass the quarter million images-six terabytes of compressed data-analyzed by Aldering and the Nearby Supernova Factory team in 2002.

Funded by the National Science Foundation, the federal agency that supports basic science and engineering research and infrastructure, HPWREN makes it possible to send images almost instantly from the 48-inch Oschin Telescope at Palomar’s remote mountaintop site to a storage facility at the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), located at LBNL in Berkeley, CA. Each image is 16 megapixels, and three images are captured every 30 seconds. Fifty gigabytes, or nearly 80 CD-ROMs’ worth, of raw data crosses the HPWREN link nightly.

Thanks to HPWREN, the project is likely to find many more supernovae in subsequent years, allowing the study of rare supernovae with unusual properties, which can better reveal how supernovae work, according to Aldering. The eventual collection of supernovae will be made available to the astronomy community.

"Greg’s supernova findings clearly illustrate the benefits of astronomers and computer network researchers partnering as a team, and we are really pleased to see how much high-performance networks enable our collaborating scientists and educators," said HPWREN principal investigator Hans-Werner Braun of UCSD’s San Diego Supercomputer Center. "We hope to continue our work together and intend to enhance the data communications bandwidth even more, as Greg and others have indicated that they can make even more great discoveries if they have more bandwidth available to them."

The supernova factory pipeline starts with images being collected by the NASA-funded Near-Earth Asteroid Tracking (NEAT) project. The images are sent across the 45-megabit-per-second HPWREN wireless link and on to LBNL, where NERSC’s computers process the images to discover and rank supernova candidates.

Eventually the pipeline will automate the entire discovery and confirmation process. Once a supernova is discovered from the Palomar images, follow-up observations will be obtained by remote control of the University of Hawaii’s 88-inch telescope on Mauna Kea. The Hawaii observations will be shipped by Internet for image processing at a supercomputing center in France and then sent to NERSC for analysis.

"If we can do this quickly enough, we can even ask the Hawaii and Palomar telescopes to get more data, say, for a very rare type of transient object," Aldering said. "This is all supposed to happen automatically while we are asleep, although it will take a while to reach a reliable level of automation."

The HPWREN team, led by Braun and Frank Vernon at the Scripps Institution of Oceanography, is prototyping and evaluating a non-commercial, high-performance, wide-area wireless network. The network includes backbone nodes on the UCSD campus and a number of hard-to-reach areas in San Diego County, including the Palomar and Mt. Laguna observatories, Native American communities, and several remote science field stations.

The poster on the Nearby Supernova Factory will be presented at the AAS meeting in Seattle during Session 56, "Supernovae Potpourri," on Jan. 7, 2003, 9:20 a.m. - 6:30 p.m.

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.



Media contact:
David Hart
(703) 292-8070, dhart@nsf.gov


Program contact:
Tom Greene
(703) 292-8948, tgreene@nsf.gov

Julie A. Smith | NSF
Further information:
http://hpwren.ucsd.edu/
http://snfactory.lbl.gov/
http://neat.jpl.nasa.gov/

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>