Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless Network Boosts Supernova Search to Stellar First Year

08.01.2003


In results presented this week at the 2003 meeting of the American Astronomical Society (AAS) in Seattle, astrophysicist Greg Aldering and colleagues report that their supernova factory project has discovered an unprecedented 34 new supernovae in its first year. The accomplishment would not have been possible without the National Science Foundation (NSF) - supported high performance wireless network link to Palomar Observatory.

"This has been the best rookie year for any supernova search project," Aldering said. The Nearby Supernova Factory, led by Aldering at Lawrence Berkeley National Laboratory (LBNL), is seeking out 300 new exploding stars to be used as standard distance markers in future studies to measure the change in the universe’s rate of expansion and thereby determine its dark energy content.

"We’re completely dependent on the wireless network because we have to sift through huge amounts of images," Aldering said, "and we need those images as soon as possible after they’re seen by the telescope."

The High Performance Wireless Research and Education Network (HPWREN), a project of the University of California, San Diego, provides Caltech’s Palomar Observatory with a high-speed link to the Internet. The link made it possible to amass the quarter million images-six terabytes of compressed data-analyzed by Aldering and the Nearby Supernova Factory team in 2002.

Funded by the National Science Foundation, the federal agency that supports basic science and engineering research and infrastructure, HPWREN makes it possible to send images almost instantly from the 48-inch Oschin Telescope at Palomar’s remote mountaintop site to a storage facility at the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), located at LBNL in Berkeley, CA. Each image is 16 megapixels, and three images are captured every 30 seconds. Fifty gigabytes, or nearly 80 CD-ROMs’ worth, of raw data crosses the HPWREN link nightly.

Thanks to HPWREN, the project is likely to find many more supernovae in subsequent years, allowing the study of rare supernovae with unusual properties, which can better reveal how supernovae work, according to Aldering. The eventual collection of supernovae will be made available to the astronomy community.

"Greg’s supernova findings clearly illustrate the benefits of astronomers and computer network researchers partnering as a team, and we are really pleased to see how much high-performance networks enable our collaborating scientists and educators," said HPWREN principal investigator Hans-Werner Braun of UCSD’s San Diego Supercomputer Center. "We hope to continue our work together and intend to enhance the data communications bandwidth even more, as Greg and others have indicated that they can make even more great discoveries if they have more bandwidth available to them."

The supernova factory pipeline starts with images being collected by the NASA-funded Near-Earth Asteroid Tracking (NEAT) project. The images are sent across the 45-megabit-per-second HPWREN wireless link and on to LBNL, where NERSC’s computers process the images to discover and rank supernova candidates.

Eventually the pipeline will automate the entire discovery and confirmation process. Once a supernova is discovered from the Palomar images, follow-up observations will be obtained by remote control of the University of Hawaii’s 88-inch telescope on Mauna Kea. The Hawaii observations will be shipped by Internet for image processing at a supercomputing center in France and then sent to NERSC for analysis.

"If we can do this quickly enough, we can even ask the Hawaii and Palomar telescopes to get more data, say, for a very rare type of transient object," Aldering said. "This is all supposed to happen automatically while we are asleep, although it will take a while to reach a reliable level of automation."

The HPWREN team, led by Braun and Frank Vernon at the Scripps Institution of Oceanography, is prototyping and evaluating a non-commercial, high-performance, wide-area wireless network. The network includes backbone nodes on the UCSD campus and a number of hard-to-reach areas in San Diego County, including the Palomar and Mt. Laguna observatories, Native American communities, and several remote science field stations.

The poster on the Nearby Supernova Factory will be presented at the AAS meeting in Seattle during Session 56, "Supernovae Potpourri," on Jan. 7, 2003, 9:20 a.m. - 6:30 p.m.

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.



Media contact:
David Hart
(703) 292-8070, dhart@nsf.gov


Program contact:
Tom Greene
(703) 292-8948, tgreene@nsf.gov

Julie A. Smith | NSF
Further information:
http://hpwren.ucsd.edu/
http://snfactory.lbl.gov/
http://neat.jpl.nasa.gov/

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>