Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Dark energy’ dominates the universe

03.01.2003


A Dartmouth researcher is building a case for a "dark energy" - dominated universe. Dark energy, the mysterious energy with unusual anti-gravitational properties, has been the subject of great debate among cosmologists.



Brian Chaboyer, Assistant Professor of Physics and Astronomy at Dartmouth, with his collaborator Lawrence Krauss, Professor of Physics and Astronomy at Case Western Reserve University, have reported their finding in the January 3, 2003, issue of Science. Combining their calculations of the ages of the oldest stars with measurements of the expansion rate and geometry of the universe lead them to conclude that dark energy dominates the energy density of the universe.

"This finding provides strong support for a universe which is dominated by a kind of energy we’ve never directly observed," says Chaboyer. "Observations of distant supernova have suggested for a few years that dark energy dominates the universe, and our finding provides independent evidence that the universe is dominated by this type of energy we do not understand."


The researchers came to this conclusion as they were refining their calculations for the age of globular clusters, which are groups of about 100,000 or more stars found in the outskirts of the Milky Way, our galaxy. Because this age (about 12 billion years old) is inconsistent with the expansion age for a flat universe (only about 9 billion years old), Krauss and Chaboyer came to the conclusion that the universe is expanding more quickly now than it did in the past.

The only explanation, according to Chaboyer and Krauss, for an accelerating universe is that the energy content of a vacuum is non-zero with a negative pressure, in other words, dark energy. This negative pressure of the vacuum grows in importance as the universe expands and causes the expansion to accelerate.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/~news/releases/may01/universe.html
http://www.dartmouth.edu/~news/releases/may01/stars.html
http://www.dartmouth.edu/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>