Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough brings laser light to new regions of the spectrum

02.01.2003


Combining concepts from electromagnetic radiation research and fiber optics, researchers have created an extreme-ultraviolet, laser-like beam capable of producing tightly-focused light in a region of the electromagnetic spectrum not previously accessible to scientists. Between 10-100 times shorter than visible light waves, the extreme-ultraviolet (EUV) wavelengths will allow researchers to "see" tiny features and carve miniature patterns, with applications in such fields as microscopy, lithography and nanotechnology.



The achievement is based on a new structure called a "waveguide," a hollow glass tube with internal humps that coax light waves into traveling along at the same speed and help the waves reinforce each other.

Reported in the January 2 issue of the journal Nature, the work is part of a continuing project supported by the National Science Foundation (NSF), an independent agency of the U.S. Government that supports science and engineering research and education.


The new beam has peak powers approaching a megawatt and produces nanometer-scale light waves, yet the entire apparatus fits on a moderately sized table.

Expanding upon earlier work, a team of researchers led by Henry Kapteyn and Margaret Murnane of JILA at the University of Colorado create EUV beams by firing a femtosecond laser through the gas-filled waveguide. A femtosecond is one quadrillionth -- 1/1,000,000,000,000,000 -- of a second, and a brief pulse of the laser can be measured in these tiny units. The intense laser light literally rips the gas atoms apart, resulting in charged ions and electrons. The laser beam then accelerates the electrons to very high energies and slams them back into the ions, releasing electromagnetic radiation (in this instance, photons at EUV wavelengths).

Some of the EUV waves can be out of phase with the laser, canceling each other and weakening the strength and coherence of the output beam. However, by creating ripples in the diameter of the waveguide, the Colorado team coaxed the light waves from the laser and EUV beams into traveling at the same speed (a result called "phase matching").

"These waveguide structures are amazingly simple – just a modulated, hollow glass tube," said Murnane. "It is as if the laser beam ’surfs’ on the modulations and is slowed down – just as the speed bumps on the road slow a car down very simply and very effectively," she added.

Slowing down the laser allows it to travel at the same speed as the EUV light and increases the efficiency of the process. The result is a well-synchronized stream of photons firing out of the system -- electromagnetic radiation boosted up to a high-energy, extreme ultraviolet, wavelength.

Unlike some room-sized counterparts, the new, laser-like, EUV source is smaller than any other EUV laser design at these very short wavelengths," said Kapteyn. "The waveguide fiber fits in one hand and the laser fits on a desktop," he added.

Moreover, the peak power of the beam is higher than any other light source at the wavelengths it achieves – all the way from the ultraviolet (UV) to the EUV region of the spectrum around 6 nanometers.

The Colorado group hopes to extend the beam’s range into what scientists call the "water-window" -- the region of the spectrum below 4 nanometers where the light is perfect for imaging biological structures. Producing a beam in this region would allow the researchers to build a small microscope for imaging living tissues on a desktop or for viewing objects at the nanoscale.

"In 10 years, laser light will span all the way to the x-ray region of the spectrum," speculated Kapteyn. "The light will be used for the most precise microscopes that we can imagine, allowing real-time movies of the complex dance that atoms weave in chemical reactions and in pharmaceuticals yet to be visualized," he added.

The research was principally supported by NSF, with additional funds from the Department of Energy. JILA is managed by both the National Institute of Standards and Technology and the University of Colorado.


###
For additional information, please see:

"Laser-Like Beam May Break Barriers to Technological Progress," NSF Release, http://www.nsf.gov/od/lpa/news/02/pr0260.htm

"X-rays light up chemical reactions," PhysicsWeb, July 2001, http://physicsweb.org/article/news/5/7/7

"Powerful Ultrafast Sources get Small," Laser Focus World, August 2001, http://lfw.pennnet.com/Articles/Article_Display.cfm?Section=Articles&Subsection=Display&ARTICLE_ID=113661

A profile of Margaret Murnane is available at: http://www.physicscentral.com/people/people-01-4.html

A profile of Henry Kapteyn is available at: http://jilawww.colorado.edu/~kapteyn/

JILA website: http://jilawww.colorado.edu/

For information on light and the electromagnetic spectrum, please see: http://www.howstuffworks.com/light.htm


Josh Chamot | EurekAlert!

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>