Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough brings laser light to new regions of the spectrum

02.01.2003


Combining concepts from electromagnetic radiation research and fiber optics, researchers have created an extreme-ultraviolet, laser-like beam capable of producing tightly-focused light in a region of the electromagnetic spectrum not previously accessible to scientists. Between 10-100 times shorter than visible light waves, the extreme-ultraviolet (EUV) wavelengths will allow researchers to "see" tiny features and carve miniature patterns, with applications in such fields as microscopy, lithography and nanotechnology.



The achievement is based on a new structure called a "waveguide," a hollow glass tube with internal humps that coax light waves into traveling along at the same speed and help the waves reinforce each other.

Reported in the January 2 issue of the journal Nature, the work is part of a continuing project supported by the National Science Foundation (NSF), an independent agency of the U.S. Government that supports science and engineering research and education.


The new beam has peak powers approaching a megawatt and produces nanometer-scale light waves, yet the entire apparatus fits on a moderately sized table.

Expanding upon earlier work, a team of researchers led by Henry Kapteyn and Margaret Murnane of JILA at the University of Colorado create EUV beams by firing a femtosecond laser through the gas-filled waveguide. A femtosecond is one quadrillionth -- 1/1,000,000,000,000,000 -- of a second, and a brief pulse of the laser can be measured in these tiny units. The intense laser light literally rips the gas atoms apart, resulting in charged ions and electrons. The laser beam then accelerates the electrons to very high energies and slams them back into the ions, releasing electromagnetic radiation (in this instance, photons at EUV wavelengths).

Some of the EUV waves can be out of phase with the laser, canceling each other and weakening the strength and coherence of the output beam. However, by creating ripples in the diameter of the waveguide, the Colorado team coaxed the light waves from the laser and EUV beams into traveling at the same speed (a result called "phase matching").

"These waveguide structures are amazingly simple – just a modulated, hollow glass tube," said Murnane. "It is as if the laser beam ’surfs’ on the modulations and is slowed down – just as the speed bumps on the road slow a car down very simply and very effectively," she added.

Slowing down the laser allows it to travel at the same speed as the EUV light and increases the efficiency of the process. The result is a well-synchronized stream of photons firing out of the system -- electromagnetic radiation boosted up to a high-energy, extreme ultraviolet, wavelength.

Unlike some room-sized counterparts, the new, laser-like, EUV source is smaller than any other EUV laser design at these very short wavelengths," said Kapteyn. "The waveguide fiber fits in one hand and the laser fits on a desktop," he added.

Moreover, the peak power of the beam is higher than any other light source at the wavelengths it achieves – all the way from the ultraviolet (UV) to the EUV region of the spectrum around 6 nanometers.

The Colorado group hopes to extend the beam’s range into what scientists call the "water-window" -- the region of the spectrum below 4 nanometers where the light is perfect for imaging biological structures. Producing a beam in this region would allow the researchers to build a small microscope for imaging living tissues on a desktop or for viewing objects at the nanoscale.

"In 10 years, laser light will span all the way to the x-ray region of the spectrum," speculated Kapteyn. "The light will be used for the most precise microscopes that we can imagine, allowing real-time movies of the complex dance that atoms weave in chemical reactions and in pharmaceuticals yet to be visualized," he added.

The research was principally supported by NSF, with additional funds from the Department of Energy. JILA is managed by both the National Institute of Standards and Technology and the University of Colorado.


###
For additional information, please see:

"Laser-Like Beam May Break Barriers to Technological Progress," NSF Release, http://www.nsf.gov/od/lpa/news/02/pr0260.htm

"X-rays light up chemical reactions," PhysicsWeb, July 2001, http://physicsweb.org/article/news/5/7/7

"Powerful Ultrafast Sources get Small," Laser Focus World, August 2001, http://lfw.pennnet.com/Articles/Article_Display.cfm?Section=Articles&Subsection=Display&ARTICLE_ID=113661

A profile of Margaret Murnane is available at: http://www.physicscentral.com/people/people-01-4.html

A profile of Henry Kapteyn is available at: http://jilawww.colorado.edu/~kapteyn/

JILA website: http://jilawww.colorado.edu/

For information on light and the electromagnetic spectrum, please see: http://www.howstuffworks.com/light.htm


Josh Chamot | EurekAlert!

More articles from Physics and Astronomy:

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>