Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough brings laser light to new regions of the spectrum

02.01.2003


Combining concepts from electromagnetic radiation research and fiber optics, researchers have created an extreme-ultraviolet, laser-like beam capable of producing tightly-focused light in a region of the electromagnetic spectrum not previously accessible to scientists. Between 10-100 times shorter than visible light waves, the extreme-ultraviolet (EUV) wavelengths will allow researchers to "see" tiny features and carve miniature patterns, with applications in such fields as microscopy, lithography and nanotechnology.



The achievement is based on a new structure called a "waveguide," a hollow glass tube with internal humps that coax light waves into traveling along at the same speed and help the waves reinforce each other.

Reported in the January 2 issue of the journal Nature, the work is part of a continuing project supported by the National Science Foundation (NSF), an independent agency of the U.S. Government that supports science and engineering research and education.


The new beam has peak powers approaching a megawatt and produces nanometer-scale light waves, yet the entire apparatus fits on a moderately sized table.

Expanding upon earlier work, a team of researchers led by Henry Kapteyn and Margaret Murnane of JILA at the University of Colorado create EUV beams by firing a femtosecond laser through the gas-filled waveguide. A femtosecond is one quadrillionth -- 1/1,000,000,000,000,000 -- of a second, and a brief pulse of the laser can be measured in these tiny units. The intense laser light literally rips the gas atoms apart, resulting in charged ions and electrons. The laser beam then accelerates the electrons to very high energies and slams them back into the ions, releasing electromagnetic radiation (in this instance, photons at EUV wavelengths).

Some of the EUV waves can be out of phase with the laser, canceling each other and weakening the strength and coherence of the output beam. However, by creating ripples in the diameter of the waveguide, the Colorado team coaxed the light waves from the laser and EUV beams into traveling at the same speed (a result called "phase matching").

"These waveguide structures are amazingly simple – just a modulated, hollow glass tube," said Murnane. "It is as if the laser beam ’surfs’ on the modulations and is slowed down – just as the speed bumps on the road slow a car down very simply and very effectively," she added.

Slowing down the laser allows it to travel at the same speed as the EUV light and increases the efficiency of the process. The result is a well-synchronized stream of photons firing out of the system -- electromagnetic radiation boosted up to a high-energy, extreme ultraviolet, wavelength.

Unlike some room-sized counterparts, the new, laser-like, EUV source is smaller than any other EUV laser design at these very short wavelengths," said Kapteyn. "The waveguide fiber fits in one hand and the laser fits on a desktop," he added.

Moreover, the peak power of the beam is higher than any other light source at the wavelengths it achieves – all the way from the ultraviolet (UV) to the EUV region of the spectrum around 6 nanometers.

The Colorado group hopes to extend the beam’s range into what scientists call the "water-window" -- the region of the spectrum below 4 nanometers where the light is perfect for imaging biological structures. Producing a beam in this region would allow the researchers to build a small microscope for imaging living tissues on a desktop or for viewing objects at the nanoscale.

"In 10 years, laser light will span all the way to the x-ray region of the spectrum," speculated Kapteyn. "The light will be used for the most precise microscopes that we can imagine, allowing real-time movies of the complex dance that atoms weave in chemical reactions and in pharmaceuticals yet to be visualized," he added.

The research was principally supported by NSF, with additional funds from the Department of Energy. JILA is managed by both the National Institute of Standards and Technology and the University of Colorado.


###
For additional information, please see:

"Laser-Like Beam May Break Barriers to Technological Progress," NSF Release, http://www.nsf.gov/od/lpa/news/02/pr0260.htm

"X-rays light up chemical reactions," PhysicsWeb, July 2001, http://physicsweb.org/article/news/5/7/7

"Powerful Ultrafast Sources get Small," Laser Focus World, August 2001, http://lfw.pennnet.com/Articles/Article_Display.cfm?Section=Articles&Subsection=Display&ARTICLE_ID=113661

A profile of Margaret Murnane is available at: http://www.physicscentral.com/people/people-01-4.html

A profile of Henry Kapteyn is available at: http://jilawww.colorado.edu/~kapteyn/

JILA website: http://jilawww.colorado.edu/

For information on light and the electromagnetic spectrum, please see: http://www.howstuffworks.com/light.htm


Josh Chamot | EurekAlert!

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>