Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough brings laser light to new regions of the spectrum

02.01.2003


Combining concepts from electromagnetic radiation research and fiber optics, researchers have created an extreme-ultraviolet, laser-like beam capable of producing tightly-focused light in a region of the electromagnetic spectrum not previously accessible to scientists. Between 10-100 times shorter than visible light waves, the extreme-ultraviolet (EUV) wavelengths will allow researchers to "see" tiny features and carve miniature patterns, with applications in such fields as microscopy, lithography and nanotechnology.



The achievement is based on a new structure called a "waveguide," a hollow glass tube with internal humps that coax light waves into traveling along at the same speed and help the waves reinforce each other.

Reported in the January 2 issue of the journal Nature, the work is part of a continuing project supported by the National Science Foundation (NSF), an independent agency of the U.S. Government that supports science and engineering research and education.


The new beam has peak powers approaching a megawatt and produces nanometer-scale light waves, yet the entire apparatus fits on a moderately sized table.

Expanding upon earlier work, a team of researchers led by Henry Kapteyn and Margaret Murnane of JILA at the University of Colorado create EUV beams by firing a femtosecond laser through the gas-filled waveguide. A femtosecond is one quadrillionth -- 1/1,000,000,000,000,000 -- of a second, and a brief pulse of the laser can be measured in these tiny units. The intense laser light literally rips the gas atoms apart, resulting in charged ions and electrons. The laser beam then accelerates the electrons to very high energies and slams them back into the ions, releasing electromagnetic radiation (in this instance, photons at EUV wavelengths).

Some of the EUV waves can be out of phase with the laser, canceling each other and weakening the strength and coherence of the output beam. However, by creating ripples in the diameter of the waveguide, the Colorado team coaxed the light waves from the laser and EUV beams into traveling at the same speed (a result called "phase matching").

"These waveguide structures are amazingly simple – just a modulated, hollow glass tube," said Murnane. "It is as if the laser beam ’surfs’ on the modulations and is slowed down – just as the speed bumps on the road slow a car down very simply and very effectively," she added.

Slowing down the laser allows it to travel at the same speed as the EUV light and increases the efficiency of the process. The result is a well-synchronized stream of photons firing out of the system -- electromagnetic radiation boosted up to a high-energy, extreme ultraviolet, wavelength.

Unlike some room-sized counterparts, the new, laser-like, EUV source is smaller than any other EUV laser design at these very short wavelengths," said Kapteyn. "The waveguide fiber fits in one hand and the laser fits on a desktop," he added.

Moreover, the peak power of the beam is higher than any other light source at the wavelengths it achieves – all the way from the ultraviolet (UV) to the EUV region of the spectrum around 6 nanometers.

The Colorado group hopes to extend the beam’s range into what scientists call the "water-window" -- the region of the spectrum below 4 nanometers where the light is perfect for imaging biological structures. Producing a beam in this region would allow the researchers to build a small microscope for imaging living tissues on a desktop or for viewing objects at the nanoscale.

"In 10 years, laser light will span all the way to the x-ray region of the spectrum," speculated Kapteyn. "The light will be used for the most precise microscopes that we can imagine, allowing real-time movies of the complex dance that atoms weave in chemical reactions and in pharmaceuticals yet to be visualized," he added.

The research was principally supported by NSF, with additional funds from the Department of Energy. JILA is managed by both the National Institute of Standards and Technology and the University of Colorado.


###
For additional information, please see:

"Laser-Like Beam May Break Barriers to Technological Progress," NSF Release, http://www.nsf.gov/od/lpa/news/02/pr0260.htm

"X-rays light up chemical reactions," PhysicsWeb, July 2001, http://physicsweb.org/article/news/5/7/7

"Powerful Ultrafast Sources get Small," Laser Focus World, August 2001, http://lfw.pennnet.com/Articles/Article_Display.cfm?Section=Articles&Subsection=Display&ARTICLE_ID=113661

A profile of Margaret Murnane is available at: http://www.physicscentral.com/people/people-01-4.html

A profile of Henry Kapteyn is available at: http://jilawww.colorado.edu/~kapteyn/

JILA website: http://jilawww.colorado.edu/

For information on light and the electromagnetic spectrum, please see: http://www.howstuffworks.com/light.htm


Josh Chamot | EurekAlert!

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>