Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Black Holes and Disks on the Balance

31.12.2002


Quasars and active galactic nuclei (AGN) are likely powered by matter accretion onto a super-massive black hole located at their center. Before being swallowed by the black hole, matter spirals towards the center, while forming an accretion disc. Unfortunately, such a disc is too small so that one can in general solve it with present day telescopes. But the technique of radio interferometry with very long base (VLBI, with base length of the size of the earth’s radius) make it possible somehow. In some objects, very intense maser emission from small molecular clouds containing water vapor and probably related to the disc have been detected. From the rotation curve of the masing disc, one can deduce some of its properties (the disc mass, its size).



Jean-Marc Huré, from the Laboratory Universe and Theories (LUTH) at Observatory of Paris-Meudon and University Paris VII, comes to show that in galaxy NGC 1068, the accretion disc would have a mass comparable with that of the black hole (with about 9 million solar masses), and a size reaching one parsec (3 light-years). Such informations bring an additional proof that the discs of quasars and AGN are indeed gigantic systems.

Quasars were discovered at the end of the Sixties. They are, with their low luminosity analogues called "Active Galactic Nuclei" (or AGN), among the most luminous objects in the Universe. Today still, all the mechanisms which could release such a power are far from being understood. However, it seems rather well established that the matter accretion on a super-massive black hole is the key-process.


The structure and the dynamics of the accretion disc remain quite mysterious. The disc is not directly observable because the resolution of current telescopes is still insufficient. It is primarily studied at short wavelengths (UV, X and gamma rays). But short wavelength spectra give information only on the internal regions of the disc (scale of the micro-parsec), very close to the black hole. The external parts of the disc (the milliparsec-scale) are made up of colder gas and radiate in the visible, infra-red, and mm bands. One suspects that at these distances, the mass of the disc (generally regarded as small) starts to play a role on its own dynamics, and thus on its evolution and its structure. At the parsec scale for example, models indicate that the mass of the disc could reach (even exceed) that of the black hole. One then expects very particular effects, like a non-keplerian rotation, and the generation of gravitational instabilities (spiral waves, etc.) who could lead to the formation of compact objects in the disc itself (like stars or planets) (Collin & Zahn, 1999, A & A, 344, 433). A point is that, the accretion disc is made of a certain amount of gas and dust, and thus it inevitably generates a certain gravity field. When this mass exceeds a fraction of the central mass (about 10% typically), then the departure to the keplerian rotation law is significant: the centrifugal force is no more compensated by the central attraction only but by the combined gravitational attraction of the black hole and of the disc.

From this point of view, an interesting case is that of active galaxy (of Seyfert-2 type) NGC 1068. One observed in this object an intense maser emission of water molecules at a distance ranging between 0.65 and 1.1 parsec of the black hole. These emissions would take place at the surface of the disc. The external rotation curve deduced from Doppler shifts does not resemble the kepler law. A recent calculation by Jean-Marc Huré, from the Observatory of Paris-Meudon and University PAris VII, (employing an inversion method of the Poisson’s equation) comes to support the assumption that the external disc could be well responsible for this non-keplerian behavior (Huré J.M., A & A Let, 2002, 395,21).

The results state indeed that one can reproduce this rotation curve provided that the outer disc has quite specific properties. Thus, parameters of the disc have been obtained. In particular, the disc would have a mass close to that of the black hole (approximately 9 million solar masses) and would be in a marginally stable state with respect to self-gravity. In addition to the constraints on the disc structure, the study also gives a value of the mass of the central black hole, inaccessible in such a galaxy by usual methods (briefly, because of a strong obscuration of this system by a torus of dust which interposes on the line of sight).

Another interesting galaxy is NGC 4258 : in this object, maser emission was also detected but here, the rotation of the disc seems in perfect agreement with Kepler’s law. Would the disc of NGC 4258 be thus not very massive, contrary to the case of NGC 1068? It is what everyone thinks... However a similar study (Huré J-M., astro-ph/0210421) shows that such a conclusion is far from being acquired. Indeed, it is possible to reproduce a keplerian rotation curve with a disc finally rather massive, reducing by 25% the mass of the black hole that one seemed to know quasi-perfectly.

The moral of the history is that the mass in the central parsec of the AGN and the Quasars is probably not concentrated into the black hole only. Other objects orbiting at these distances, to begin with the accretion disc, might contain a noticeable (even dominant) fraction of it. The inversion method used here enables to see indirectly how the mass is spatially distributed, to refine or to correct our estimations of black hole masses, and gradually to unveil the external part of the accretion discs.

Jean-Pierre Luminet | alfa
Further information:
http://luth2.obspm.fr/Compress/dec02_hure.en.html

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>