Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Black Holes and Disks on the Balance

31.12.2002


Quasars and active galactic nuclei (AGN) are likely powered by matter accretion onto a super-massive black hole located at their center. Before being swallowed by the black hole, matter spirals towards the center, while forming an accretion disc. Unfortunately, such a disc is too small so that one can in general solve it with present day telescopes. But the technique of radio interferometry with very long base (VLBI, with base length of the size of the earth’s radius) make it possible somehow. In some objects, very intense maser emission from small molecular clouds containing water vapor and probably related to the disc have been detected. From the rotation curve of the masing disc, one can deduce some of its properties (the disc mass, its size).



Jean-Marc Huré, from the Laboratory Universe and Theories (LUTH) at Observatory of Paris-Meudon and University Paris VII, comes to show that in galaxy NGC 1068, the accretion disc would have a mass comparable with that of the black hole (with about 9 million solar masses), and a size reaching one parsec (3 light-years). Such informations bring an additional proof that the discs of quasars and AGN are indeed gigantic systems.

Quasars were discovered at the end of the Sixties. They are, with their low luminosity analogues called "Active Galactic Nuclei" (or AGN), among the most luminous objects in the Universe. Today still, all the mechanisms which could release such a power are far from being understood. However, it seems rather well established that the matter accretion on a super-massive black hole is the key-process.


The structure and the dynamics of the accretion disc remain quite mysterious. The disc is not directly observable because the resolution of current telescopes is still insufficient. It is primarily studied at short wavelengths (UV, X and gamma rays). But short wavelength spectra give information only on the internal regions of the disc (scale of the micro-parsec), very close to the black hole. The external parts of the disc (the milliparsec-scale) are made up of colder gas and radiate in the visible, infra-red, and mm bands. One suspects that at these distances, the mass of the disc (generally regarded as small) starts to play a role on its own dynamics, and thus on its evolution and its structure. At the parsec scale for example, models indicate that the mass of the disc could reach (even exceed) that of the black hole. One then expects very particular effects, like a non-keplerian rotation, and the generation of gravitational instabilities (spiral waves, etc.) who could lead to the formation of compact objects in the disc itself (like stars or planets) (Collin & Zahn, 1999, A & A, 344, 433). A point is that, the accretion disc is made of a certain amount of gas and dust, and thus it inevitably generates a certain gravity field. When this mass exceeds a fraction of the central mass (about 10% typically), then the departure to the keplerian rotation law is significant: the centrifugal force is no more compensated by the central attraction only but by the combined gravitational attraction of the black hole and of the disc.

From this point of view, an interesting case is that of active galaxy (of Seyfert-2 type) NGC 1068. One observed in this object an intense maser emission of water molecules at a distance ranging between 0.65 and 1.1 parsec of the black hole. These emissions would take place at the surface of the disc. The external rotation curve deduced from Doppler shifts does not resemble the kepler law. A recent calculation by Jean-Marc Huré, from the Observatory of Paris-Meudon and University PAris VII, (employing an inversion method of the Poisson’s equation) comes to support the assumption that the external disc could be well responsible for this non-keplerian behavior (Huré J.M., A & A Let, 2002, 395,21).

The results state indeed that one can reproduce this rotation curve provided that the outer disc has quite specific properties. Thus, parameters of the disc have been obtained. In particular, the disc would have a mass close to that of the black hole (approximately 9 million solar masses) and would be in a marginally stable state with respect to self-gravity. In addition to the constraints on the disc structure, the study also gives a value of the mass of the central black hole, inaccessible in such a galaxy by usual methods (briefly, because of a strong obscuration of this system by a torus of dust which interposes on the line of sight).

Another interesting galaxy is NGC 4258 : in this object, maser emission was also detected but here, the rotation of the disc seems in perfect agreement with Kepler’s law. Would the disc of NGC 4258 be thus not very massive, contrary to the case of NGC 1068? It is what everyone thinks... However a similar study (Huré J-M., astro-ph/0210421) shows that such a conclusion is far from being acquired. Indeed, it is possible to reproduce a keplerian rotation curve with a disc finally rather massive, reducing by 25% the mass of the black hole that one seemed to know quasi-perfectly.

The moral of the history is that the mass in the central parsec of the AGN and the Quasars is probably not concentrated into the black hole only. Other objects orbiting at these distances, to begin with the accretion disc, might contain a noticeable (even dominant) fraction of it. The inversion method used here enables to see indirectly how the mass is spatially distributed, to refine or to correct our estimations of black hole masses, and gradually to unveil the external part of the accretion discs.

Jean-Pierre Luminet | alfa
Further information:
http://luth2.obspm.fr/Compress/dec02_hure.en.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>