Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Which Ringed Planet...!?

23.12.2002


5-min exposure of Uranus - with rings and moons - made in infrared light with the ISAAC instrument at the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory.


Don’t worry - you are not the only one who thought this was a nice amateur photo of planet Saturn, Lord of the Rings in our Solar System!

But then the relative brightness and positions of the moons may appear somewhat unfamiliar... and the ring system does look unusually bright when compared to the planetary disk...??

Well, it is not Saturn, but Uranus, the next giant planet further out, located at a distance of about 3,000 million km, or 20 times the distance between the Sun and the Earth.



The photo shows Uranus surrounded by its rings and some of the moons, as they appear on a near-infrared image that was obtained in the Ks-band (at wavelength 2.2 µm) with the ISAAC multi-mode instrument on the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory (Chile). The exposure was made on November 19, 2002 (03:00 hrs UT) during a planetary research programme. The observing conditions were excellent (seeing 0.5 arcsec) and the exposure lasted 5 min. The angular diameter of Uranus is about 3.5 arcsec.

The observers at ISAAC were Emmanuel Lellouch and Thérése Encrenaz of the Observatoire de Paris (France) and Jean-Gabriel Cuby and Andreas Jaunsen (both ESO-Chile).

The rings

The rings of Uranus were discovered in 1977, from observations during a stellar occultation event by astronomer teams at the Kuiper Airborne Observatory (KAO) and the Perth Observatory (Australia). Just before and after the planet moved in front of the (occulted) star, the surrounding rings caused the starlight to dim for short intervals of time. Photos obtained from the Voyager-2 spacecraft in 1986 showed a multitude of very tenuous rings. These rings are almost undetectable from the Earth in visible light.

However, on the present VLT near-infrared picture, the contrast between the rings and the planet is strongly enhanced. At the particular wavelength at which this observation was made, the infalling sunlight is almost completely absorbed by gaseous methane present in the planetary atmosphere and the disk of Uranus therefore appears unsually dark. At the same time, the icy material in the rings reflects the sunlight and appears comparatively bright.

Uranus is unique among the planets of the solar system in having a tilted rotation axis that is close to the main solar system plane in which most planets move (the "Ecliptic"). At the time of the Voyager-2 encounter (1986), the southern pole was oriented toward the Earth. Now, sixteen years later (corresponding to about one-fifth of Uranus’ 84-year period of revolution), we observe the Uranian ring system at an angle that is comparable to the one under which we see Saturn when its ring system is most "open".

The moons

Seven of the moons of Uranus have been identified in PR Photo 31b/02 [1]. Of these, Titania and Oberon are the brightest (visual magnitude about 14). They were first seen in 1787 by the discoverer of Uranus, William Herschel (1738-1822), working at Bath in England. Ariel and Umbriel were found in 1851 by William Lassell (1799-1880) at Liverpool in the same country. Miranda was discovered in 1948 by Gerard Kuiper (1905-1973) at the 5-m Palomar telescope in California (USA).

The much smaller and fainter Puck and Portia (visual magnitude about 21 and barely visible in the photo) were first found in 1985-86 by Stephen P. Synnott of the Jet Propulsion Laboratory (USA), during a study of Voyager-2 photos obtained soon before this NASA spacecraft flew by Uranus in January 1986.

Other VLT images

If you now want to see a fine VLT photo of Saturn, please look at PR Photo 04a/02, obtained in late 2001. It was made with the NAOS-CONICA (NACO) Adaptive Optics facility and is therefore much less influenced by atmospheric turbulence and hence correspondingly sharper than the present ISAAC image of Uranus.

More VLT images are available in the VLT Photo Gallery.

Note

[1]: Historic information about the discovery of Uranus’ moons is available at the History of Astronomy website. There is also a very useful list of planet and satellite names and discoverers at the IAU Gazetteer of Planetary Nomenclature website.

Richard West | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2002/phot-31-02.html

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>