Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of giant X-ray disk sheds light on elliptical galaxies

18.12.2002


Astronomers discovered a giant disk of hot, X-ray emitting gas in the elliptical galaxy NGC 1700.
Courtesy of Thomas Statler


Ohio University astronomers have discovered the largest disk of hot, X-ray emitting gas ever observed in the universe: At 90,000 light years in diameter, it’s about 100,000 times the size of any comparable object. The disk, spinning through a distant galaxy, is more than just an interstellar oddity, the researchers say. The object could offer new information about the way certain galaxies form and evolve.

About 20 percent of all galaxies are elliptical, the largest of the three types of galaxies in the universe. They differ from spiral galaxies like the Milky Way, as they lack new stars and spiral "arms." Scientists once believed that elliptical galaxies were ancient, simple systems that contained only old stars and formed in the early days of the universe. But new research suggests elliptical galaxies are more complex and dynamic.

"It used to be thought that galaxies form and then sit there and age quietly over time. But now we understand that galaxies live, in the sense that there’s an interplay of gas and stars," said Thomas Statler, an associate professor of physics and astronomy and lead author of the study, published in the Dec. 20 issue of the Astrophysical Journal.



The newly discovered X-ray disk offers more evidence for that argument. Using NASA’s Chandra X-ray Observatory, an orbiting spacecraft that houses the most powerful X-ray telescope in existence, the astronomers discovered the disk while analyzing data collected from NGC 1700, a young elliptical galaxy about 160 million light years from Earth. Giant in size and about 8 million degrees in temperature, the disk was an unexpected find for Statler and colleague Brian McNamara.

But while its gargantuan scale is striking, the disk also yielded another surprise: The hot gas is not in calm balance with the gravitational forces as expected, but spinning through the galaxy.

In fact, the giant, rotating X-ray disk suggests that this elliptical galaxy – and perhaps others like it – wasn’t created by the merger of two spiral galaxies, the leading picture of elliptical galaxy formation. "If you take the simple picture that everyone has been working with, it really can’t explain this," said Statler, whose research is funded by NASA through the Chandra X-ray Observatory Center.

The astronomers hypothesize that the X-ray disk was created during the collision of an elliptical galaxy and a spiral galaxy. But instead of crashing head-on, the galaxies first dealt each other a glancing blow, sending the elliptical galaxy’s hot gas into a tailspin. "When you see gas spread out in a disk, like we’re seeing with NGC 1700, it’s telling you that the history of the galaxy is something more complicated," Statler said.

The rotation of the X-ray disk also could impact the way astronomers establish the mass of galaxies, Statler added. Scientists calculate mass based on the hot gas found inside, assuming that the gas is in pressure balance with gravitational forces. But rotation of the hot gases may throw off those computations. The researcher’s team is beginning to re-examine data from other galaxies to determine if the phenomenon exists elsewhere in the universe, and if scientists should recalculate galaxy weight.

"We want to figure out how widespread and how significant the rotation in the gas is," he said. "It could tell us how to correct what we’ve done before."


###
Written by Andrea Gibson.

Attention Editors, Reporters: An image of the X-ray disk is available at 300 dpi. Contact Andrea Gibson at gibsona@ohio.edu or Becky Gill at gillr@ohio.edu. A copy of the article on which this news release is based is available online at http://www.journals.uchicago.edu/ApJ/journal/issues/ApJ/v581n2/55475/55475.web.pdf.

This news release also is available online at http://www.ohiou.edu/researchnews/science/xray_disk.html.

Contact: Thomas Statler, 740-593-1722, statler@ohio.edu

Andrea Gibson | EurekAlert!
Further information:
http://www.ohiou.edu/researchnews/science/xray_disk.html
http://www.journals.uchicago.edu/ApJ/journal/issues/ApJ/v581n2/55475/55475.web.pdf

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>