Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory unravels magnetic instability

10.12.2002


Reconnection, the merging of magnetic field lines of opposite polarity near the surface of the sun, Earth and some black holes, is believed to be the root cause of many spectacular astronomical events such as solar flares and coronal mass ejections, but the reason for this is not well understood. Researchers at Los Alamos National Laboratory now have a new theory that may explain the instability and advance the understanding of these phenomena.




Theorists Giovanni Lapenta of Los Alamos National Laboratory’s Plasma Theory group and Dana Knoll of the Lab’s Fluid Dynamics group presented their findings at the American Geophysical Union meeting in San Francisco at the Moscone Convention Center.

The theory is based on a 19th century mathematical observation called Kelvin-Helmholtz instability. "What we are trying to determine is why magnetic field lines loop out from the surface of the sun, reconnect and then fall back," said Lapenta. "And why these systems, which look very stable, are in fact quite unstable."


According to Lapenta, reconnection rates based on resistivity are orders of magnitude too slow to explain observed coronal reconnections. One possible mechanism that provides fast reconnection rates is known as "driven" reconnection-where external forces drive field lines together in a way that is independent of resistivity. Lapenta and Knoll believe that related work focused on magnetic field line reconnection in Earth’s magnetopause has shown that the Kelvin-Helmholtz instability can cause compressive actions that push field lines together and drive reconnection. "We propose that the same mechanism at work in the magnetopause could conceivably be at work in the solar corona and elsewhere," said Lapenta.

In this theory, motion on the visible surface of the sun - the photosphere - leads to twisting deformation waves that move through the chromosphere, a layer of solar atmosphere just above the photosphere, growing larger as they move and emerging with a rapid increase of speed through the sun’s corona, or outer atmosphere. This rapid change in speed, or velocity shear, injected into the corona can cause magnetic loops to reconnect, according to Lapenta.

"We have conducted a series of simulations and shown that indeed reconnection can be achieved trough local compression driven by Kelvin- Helmholtz and that the reconnection rate is not sensitive to resistivity," said Lapenta.

From this beginning point, Lapenta hopes to study the processes tied to motion on the surface of the sun to better understand why these "velocity shears" occur and how they move away from the sun and lead to CMEs and other solar events, and to apply this knowledge to better understanding the magnetic fields around the earth and the disc-shaped rotating masses, or accretion discs, that form around some black holes.


Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and national security concerns.



Kevin Roark | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>