Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New CU-NASA research belies previous idea that Mars was once warm, wet planet

06.12.2002


A new study led by University of Colorado at Boulder researchers indicates Mars has been primarily a cold, dry planet following its formation some 4 billion years ago, making the possibility of the evolution of life there challenging at best.



Led by CU-Boulder doctoral candidate Teresa Segura and her adviser, Professor Owen B. Toon, the team used Mars photos and computer models to show that large asteroids or comets hit the planet some 3.5 billion years ago. These impacts apparently occurred about the time major river channels were formed on the Red Planet, said Segura.

According to the available evidence, roughly 25 huge impactors, each about 60 miles to 150 miles in diameter, slammed into Mars roughly every 10 million to 20 million years during the period, blowing a volume of debris equivalent to a global blanket hundreds of yards thick into the atmosphere. The material is believed to have melted portions of subsurface and polar ice, creating steam and scalding water that rained back on Mars at some six feet per year for decades or centuries, causing rivers to form and flow, according to the study.


But the study belies the warm, wet, Mars theory of rivers and oceans embraced by many planetary scientists, since such impactors were so infrequent. "There apparently were some brief warm and wet periods on Mars, but we believe that through most of its history, Mars has been a cold, dry planet," said Segura, currently a visiting researcher at NASA-Ames in California.

A paper by Segura, Toon, CU-Boulder graduate Anthony Colaprete -- now at NASA-Ames -- and Kevin Zahnle of NASA-Ames, will appear in the Dec. 6 issue of Science.

"When the river valleys on Mars were confirmed in the 1970s, many scientists believed there once was an Earth-like period with warmth, rivers and oceans," said Toon, director of CU-Boulder’s Program in Oceanic and Atmospheric Sciences and a professor at the University’s Laboratory for Astrophysics and Space Physics. "What sparked our interest was that the large craters and river valleys appeared to be about the same age."

In between such catastrophic events, the planet was likely very cold, dry and inhospitable to any life forms, said Toon. "We definitely see river valleys but not tributaries, indicating the rivers were not as mature as those on Earth."

The rare, hot rains pelting Mars that likely came from water in asteroids and comets hitting the planets and the evaporation of some ice from polar caps and ice beneath the impacts would have been spectacular, said Segura. "We believe these events caused short periods of a warm and wet climate, but overall, we think Mars has been cold and dry for the majority of its history."

According to Toon, previous theories that carbon dioxide gas and clouds warmed Mars during its early history "just have not worked out quantitatively." There is no evidence on Mars of large limestone deposits from the first billion years, which would be directly linked to large amounts of C02, a greenhouse gas, he said.

There also is no evidence that another greenhouse gas, methane -- which can be created naturally by volcanic eruptions or produced by primitive life -- was present in the Martian atmosphere. But even CO2 and methane combined would not be enough to warm the planet as greenhouse gases did on Earth and Venus in their early histories, Toon said.

"Hypotheses of a warm, wet Mars, based on the presumption that the valley networks formed in a long-lasting greenhouse climate, imply that Mars may once have been teeming with life," wrote the authors in Science. "In contrast, we envision a cold and dry planet, an almost endless winter broken by episodes of scalding rains followed by flash floods.

"Only during the brief years or decades after the impact events would Mars have been temperate, and only then might it have bloomed with life as we know it," they wrote. Although temperatures in the subsurface of Martian soil may have exceeded the boiling point during the impact period and provided a possible refuge for life underground, the short duration of warm periods predicted by the researchers would have made it difficult for life to ever establish itself on Mars, the team concluded.


Contact: Teresa Segura, 650-604- 0321, segurat@colorado.edu ,
Owen B. Toon, 303-492-1534, toon@lasp.colorado.edu , or
Jim Scott, 303-492-3114.

Teresa Segura | EurekAlert!

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>