Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New CU-NASA research belies previous idea that Mars was once warm, wet planet

06.12.2002


A new study led by University of Colorado at Boulder researchers indicates Mars has been primarily a cold, dry planet following its formation some 4 billion years ago, making the possibility of the evolution of life there challenging at best.



Led by CU-Boulder doctoral candidate Teresa Segura and her adviser, Professor Owen B. Toon, the team used Mars photos and computer models to show that large asteroids or comets hit the planet some 3.5 billion years ago. These impacts apparently occurred about the time major river channels were formed on the Red Planet, said Segura.

According to the available evidence, roughly 25 huge impactors, each about 60 miles to 150 miles in diameter, slammed into Mars roughly every 10 million to 20 million years during the period, blowing a volume of debris equivalent to a global blanket hundreds of yards thick into the atmosphere. The material is believed to have melted portions of subsurface and polar ice, creating steam and scalding water that rained back on Mars at some six feet per year for decades or centuries, causing rivers to form and flow, according to the study.


But the study belies the warm, wet, Mars theory of rivers and oceans embraced by many planetary scientists, since such impactors were so infrequent. "There apparently were some brief warm and wet periods on Mars, but we believe that through most of its history, Mars has been a cold, dry planet," said Segura, currently a visiting researcher at NASA-Ames in California.

A paper by Segura, Toon, CU-Boulder graduate Anthony Colaprete -- now at NASA-Ames -- and Kevin Zahnle of NASA-Ames, will appear in the Dec. 6 issue of Science.

"When the river valleys on Mars were confirmed in the 1970s, many scientists believed there once was an Earth-like period with warmth, rivers and oceans," said Toon, director of CU-Boulder’s Program in Oceanic and Atmospheric Sciences and a professor at the University’s Laboratory for Astrophysics and Space Physics. "What sparked our interest was that the large craters and river valleys appeared to be about the same age."

In between such catastrophic events, the planet was likely very cold, dry and inhospitable to any life forms, said Toon. "We definitely see river valleys but not tributaries, indicating the rivers were not as mature as those on Earth."

The rare, hot rains pelting Mars that likely came from water in asteroids and comets hitting the planets and the evaporation of some ice from polar caps and ice beneath the impacts would have been spectacular, said Segura. "We believe these events caused short periods of a warm and wet climate, but overall, we think Mars has been cold and dry for the majority of its history."

According to Toon, previous theories that carbon dioxide gas and clouds warmed Mars during its early history "just have not worked out quantitatively." There is no evidence on Mars of large limestone deposits from the first billion years, which would be directly linked to large amounts of C02, a greenhouse gas, he said.

There also is no evidence that another greenhouse gas, methane -- which can be created naturally by volcanic eruptions or produced by primitive life -- was present in the Martian atmosphere. But even CO2 and methane combined would not be enough to warm the planet as greenhouse gases did on Earth and Venus in their early histories, Toon said.

"Hypotheses of a warm, wet Mars, based on the presumption that the valley networks formed in a long-lasting greenhouse climate, imply that Mars may once have been teeming with life," wrote the authors in Science. "In contrast, we envision a cold and dry planet, an almost endless winter broken by episodes of scalding rains followed by flash floods.

"Only during the brief years or decades after the impact events would Mars have been temperate, and only then might it have bloomed with life as we know it," they wrote. Although temperatures in the subsurface of Martian soil may have exceeded the boiling point during the impact period and provided a possible refuge for life underground, the short duration of warm periods predicted by the researchers would have made it difficult for life to ever establish itself on Mars, the team concluded.


Contact: Teresa Segura, 650-604- 0321, segurat@colorado.edu ,
Owen B. Toon, 303-492-1534, toon@lasp.colorado.edu , or
Jim Scott, 303-492-3114.

Teresa Segura | EurekAlert!

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>