Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Longest atomic state lifetime measured from spontaneous decay in UV

05.12.2002


Planetary nebula NGC3918, shown here, is a rare enough environment that atoms refrain from colliding long enough that scientists on Earth can study the spontaneous decay of atoms in very long-lived states.


The internal state of an atom can change by absorbing or emitting bits of light. In a warm gas or plasma the electrons are frequently shuttling back and forth from one state to another. Some of these states are longer lived than others, though, because of extenuating circumstances. For instance, many transitions from an excited state to the ground state occur in nanoseconds, but some can last for tens of seconds or longer. Measuring the true lifetime of the longer-lived of these transitions is difficult for the simple reason that ev en when a sample of atoms is dilute, an atom is being bumped so often that de-excitations come about before the state decays radiatively.

When even the best laboratory vacuum on Earth is still too crowded for making such delicate measurements, persistent scientists turn to outer space. Tomas Brage of Lund University (Lund, Sweden), Philip Judge of the High Altitude Observatory at NCAR (Boulder, CO), and Charles Proffitt of the Computer Science Corporation (Baltimore, MD) resort to viewing excited atoms in the planetary nebula NGC3 918 where, amid the wreckage of a dying star, there is enough energy to excite a toms but a density low enough (a few 1000 per cubic centimeter) that mutual pumping isn’t a problem (see image). Using the Hubble Space Telescope, the three scientists looked at the emissions of excited triply ionized nitrogen atoms and observed a lifetime of 2500 seconds for one particular hyperfine transition. Why is this state so robust?

Brage (tomas.brage@fysik.lu.se, 46-46-222-7724) says that angular momentum can be preserved in this transition only if, in addition to the electron emitting an ultraviolet photon, the nucleus itself flips over. Other than adding to basic knowledge about atomic physics , studies like these should provide spectroscopic information for studying the deaths of stars. (Brage et al., upcoming article in Physical Review Letters, probably 16 December; text at www.aip.org/physnews/select)

Phillip F. Schewe | AIP Bulletin
Further information:
http://www.aip.org/physnews/select

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>