Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Jupiter-like planets formed in hundreds – not millions – of years, study shows


An accepted assumption in astrophysics holds that it takes more than 1 million years for gas giant planets such as Jupiter and Saturn to form from the cosmic debris circling a young star. But new research suggests such planets form in a dramatically shorter period, as little as a few hundred years.

The forming planets have to be able to survive the effects of nearby stars burning brightly, heating and dispersing the gases that accumulate around the giant planets. If the process takes too long, the gases will be dissipated by the radiation from those stars, said University of Washington astrophysicist Thomas R. Quinn.

"If a gas giant planet can’t form quickly, it probably won’t form at all," he said.

The standard model of planet formation holds that the spinning disk of matter, called a protoplanetary disk, that surrounds a young star gradually congeals into masses that form the cores of planets. That process was thought to take a million years or so, and then the giants gradually accumulate their large gaseous envelopes over perhaps another 1 million to 10 million years.

But the new research, culled from a much-refined mathematical model, suggests that the protoplanetary disk begins to fragment after just a few spins around its star. As the disk fragments, clusters of matter begin to form quickly and immediately start to draw in the gases that form vapor shrouds around gas giants.

"If these planets can’t form quickly, then they should be a relatively rare phenomenon, whereas if they form according to this mechanism they should be a relatively common phenomenon," said Quinn, a UW research assistant astronomy professor.

The existence of gas giant planets, it turns out, seems to be fairly common. Since the mid-1990s, researchers have discovered more than 100 planets, generally from the mass of Jupiter to 10 times that size, orbiting stars outside the solar system. Those planets were deduced by their gravitational effect on their parent stars, and their discovery lends credence to the new research, Quinn said.

Lucio Mayer, a former UW post-doctoral researcher who recently joined the University of Zurich, is lead author of a paper detailing the work, published in the Nov. 29 edition of Science. Besides Quinn, co-authors are James Wadsley of McMaster University, Hamilton, Ontario, Canada, and Joachim Stadel at the University of Victoria, British Columbia, Canada. Their work is supported by grants from the National Science Foundation and the National Aeronautics and Space Administration’s Astrobiology Institute.

Since the early 1950s, some scientists have entertained the notion that gas giant planets were formed quickly. However, the model, using a specialized fluid dynamics simulation, had never been refined enough to show what it does now. The Mayer-Quinn team spent the better part of two years refining calculations and plugging them into the model to show what would happen to a protoplanetary disk over a longer time.

"The main criticism people had of this model was that it wasn’t quite ready yet," Quinn said. "Nobody was making any predictions out of it, but here we are making predictions out of it."

The new model explains why two other giant planets in our system, Uranus and Neptune, don’t have gas envelopes like Jupiter and Saturn, Quinn said. At the time those planets were being formed, the solar system was part of a star cluster. The outer planets of Uranus and Neptune were too close to a nearby star – one that has since migrated away – and therefore lost whatever gas envelopes they might have accumulated.

Neither the new model nor the standard model accounts for why most of the gas giant planets found outside the solar system are much nearer their suns than are Jupiter and Saturn, Quinn said. The most common belief currently is that the planets formed farther away from their stars and then migrated inward to the positions where they have been discovered.

The new model also doesn’t account for the formation of terrestrial planets, like Earth and Mars, near our sun. But Quinn suspects that perhaps the smaller terrestrial planets were formed over longer periods by processes described by the standard planet-formation model, while the new model explains how the larger gas giants came to be.

"That’s my bet at the moment," he said.

For more information, contact Quinn at 206-685-9009 or, or Mayer at 41-163-55-740 or

Vince Stricherz | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>