Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jupiter-like planets formed in hundreds – not millions – of years, study shows

29.11.2002


An accepted assumption in astrophysics holds that it takes more than 1 million years for gas giant planets such as Jupiter and Saturn to form from the cosmic debris circling a young star. But new research suggests such planets form in a dramatically shorter period, as little as a few hundred years.



The forming planets have to be able to survive the effects of nearby stars burning brightly, heating and dispersing the gases that accumulate around the giant planets. If the process takes too long, the gases will be dissipated by the radiation from those stars, said University of Washington astrophysicist Thomas R. Quinn.

"If a gas giant planet can’t form quickly, it probably won’t form at all," he said.


The standard model of planet formation holds that the spinning disk of matter, called a protoplanetary disk, that surrounds a young star gradually congeals into masses that form the cores of planets. That process was thought to take a million years or so, and then the giants gradually accumulate their large gaseous envelopes over perhaps another 1 million to 10 million years.

But the new research, culled from a much-refined mathematical model, suggests that the protoplanetary disk begins to fragment after just a few spins around its star. As the disk fragments, clusters of matter begin to form quickly and immediately start to draw in the gases that form vapor shrouds around gas giants.

"If these planets can’t form quickly, then they should be a relatively rare phenomenon, whereas if they form according to this mechanism they should be a relatively common phenomenon," said Quinn, a UW research assistant astronomy professor.

The existence of gas giant planets, it turns out, seems to be fairly common. Since the mid-1990s, researchers have discovered more than 100 planets, generally from the mass of Jupiter to 10 times that size, orbiting stars outside the solar system. Those planets were deduced by their gravitational effect on their parent stars, and their discovery lends credence to the new research, Quinn said.

Lucio Mayer, a former UW post-doctoral researcher who recently joined the University of Zurich, is lead author of a paper detailing the work, published in the Nov. 29 edition of Science. Besides Quinn, co-authors are James Wadsley of McMaster University, Hamilton, Ontario, Canada, and Joachim Stadel at the University of Victoria, British Columbia, Canada. Their work is supported by grants from the National Science Foundation and the National Aeronautics and Space Administration’s Astrobiology Institute.

Since the early 1950s, some scientists have entertained the notion that gas giant planets were formed quickly. However, the model, using a specialized fluid dynamics simulation, had never been refined enough to show what it does now. The Mayer-Quinn team spent the better part of two years refining calculations and plugging them into the model to show what would happen to a protoplanetary disk over a longer time.

"The main criticism people had of this model was that it wasn’t quite ready yet," Quinn said. "Nobody was making any predictions out of it, but here we are making predictions out of it."

The new model explains why two other giant planets in our system, Uranus and Neptune, don’t have gas envelopes like Jupiter and Saturn, Quinn said. At the time those planets were being formed, the solar system was part of a star cluster. The outer planets of Uranus and Neptune were too close to a nearby star – one that has since migrated away – and therefore lost whatever gas envelopes they might have accumulated.

Neither the new model nor the standard model accounts for why most of the gas giant planets found outside the solar system are much nearer their suns than are Jupiter and Saturn, Quinn said. The most common belief currently is that the planets formed farther away from their stars and then migrated inward to the positions where they have been discovered.

The new model also doesn’t account for the formation of terrestrial planets, like Earth and Mars, near our sun. But Quinn suspects that perhaps the smaller terrestrial planets were formed over longer periods by processes described by the standard planet-formation model, while the new model explains how the larger gas giants came to be.

"That’s my bet at the moment," he said.


For more information, contact Quinn at 206-685-9009 or trq@astro.washington.edu, or Mayer at 41-163-55-740 or lucio@physik.unizh.ch

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>