Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Record-High Magnetic Fields in the Lab


Record-high magnetic fields in the lab, almost a Gigagauss in magnitude, have been achieved by aiming intense laser light at a dense plasma, expanding the possibilities for laboratory re-creations of astrophysical events.

At last week’s APS Division of Plasma Physics Meeting in Orlando, researchers from Imperial College, London, and the Rutherford Appleton Lab in the UK announced evidence of super-strong magnetic fields that are hundreds of times more intense than any previous magnetic field created in an Earth laboratory and up to a billion times stronger than our planet’s natural magnetic field. Such intense magnetic fields may soon enable researchers to recreate extreme astrophysical conditions, such as the atmospheres of neutron stars and white dwarfs, in their very own laboratories.

At the Rutherford Appleton Laboratory near Oxford in the UK, researchers at the VULCAN facility aimed intense laser pulses, lasting only picoseconds (trillionths of a second), at a dense plasma. The resulting magnetic fields in the plasma were on the order of 400 Megagauss.

To determine the magnitude of the fields, the researchers made polarization measurements of high-frequency light emitted during the experiment. Recent measurements presented at the APS/DPP conference suggested that the peak magnetic field in the densest region of the plasma approaches 1 Gigagauss.

Due to technological advances peak laser intensities are likely to increase still further and consequently even higher magnetic fields may soon be possible, making it possible to put models of extreme astrophysical conditions to the test. (Poster CP1.125, November 11, contact Karl Krushelnick, Imperial College, University of London, 011-44-20-7594-7635,; for background see Tatarakis et al., Nature, 17 January 2002)

Phil Schewe | Physics news update 614
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>