NIST solving a mystery among electrons

When it comes to sleuthing in science, few are better than the intrepid investigators at the National Institute of Standards and Technology (NIST). For example, take the “Case of the Stray Electrons.”

NIST researchers have created nanoscale devices that manipulate electrons in order to count them one at a time. Such counting is critical to the development of new fundamental electrical standards. When two electrons are bound in pairs (called Cooper pairs) in a superconductor, they can be manipulated much faster, providing larger currents that can be measured more accurately. Manipulation of Cooper pairs also is important in several schemes to develop quantum computers. Past attempts at manipulation, however, have been thwarted by the existence of a small number of unpaired electrons rambling around in the superconducting state. Avoiding these unpaired electrons is the mystery that NIST is now helping solve.

NIST researchers have uncovered an important clue by showing that a previously unappreciated factor has a strong effect on the number of unpaired electrons in Cooper pair devices. Electron counting devices are made from two layers of aluminum, where the strengths of the bonds pairing electrons in each layer can be different. This slight difference originally was thought to be unimportant. However, a study of more than a dozen devices in which this difference was varied in a controlled way and independently measured in each device, shows the difference does affect device performance directly.

Media Contact

Fred McGehan EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors