Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma doughnut currents made hollow, leading to greater efficiency for fusion

08.11.2002


Computer simulation of the sequence of events in the reconnection process. Shown are contours of constant pressure at different times. As the current starts to become negative, the reconnection process begins and moves the center rapidly to the edge, effectively clamping the current in the center at zero


Doughnuts of plasma can be coaxed into configurations with hollow current rings, providing practical advantages over conventional “filled doughnut” shapes. Simulations suggest they will allow faster turn-on and greater efficiency of future nuclear fusion power plants.

Toroidal tokamaks, doughnut-shaped experimental fusion reactors, use a complex system of magnetic fields to hold a plasma together. Electrical currents flowing in the plasma itself are essential for making the internal magnetic fields needed for confinement. Plasma doughnuts normally carry large electrical currents throughout their volume but researchers expected the direction of the current could be changed back and forth.

However, in recent experiments at the Joint European Torus (JET) and JT-60U tokamaks in England and Japan, researchers tried to reverse the current and found, to their surprise, that the current doughnut became hollow.



Now computer simulations conducted by researchers at the DOE’s Princeton Plasma Physics Laboratory (PPPL) using supercomputers at the National Energy Research Supercomputer Center have explained this phenomenon. Instead of the electric current reversing direction, the plasma experiences magnetic reconnection (see Highlight 4) and the core becomes stabilized with zero current. As soon as a current tries to reverse in the center, it is pulled into the outer ring. (See images.) This new understanding should allow a more practical design of compact next-generation fusion experiments.


Contacts
Joshua Breslau, PPPL, 609-243-2677, jbreslau@pppl.gov

David Harris | EurekAlert!
Further information:
http://www.aps.org/meet/DPP02/baps/press/press5.html
http://www.aps.org/meet/DPP02/baps/abs/S610005.html

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>