Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma doughnut currents made hollow, leading to greater efficiency for fusion

08.11.2002


Computer simulation of the sequence of events in the reconnection process. Shown are contours of constant pressure at different times. As the current starts to become negative, the reconnection process begins and moves the center rapidly to the edge, effectively clamping the current in the center at zero


Doughnuts of plasma can be coaxed into configurations with hollow current rings, providing practical advantages over conventional “filled doughnut” shapes. Simulations suggest they will allow faster turn-on and greater efficiency of future nuclear fusion power plants.

Toroidal tokamaks, doughnut-shaped experimental fusion reactors, use a complex system of magnetic fields to hold a plasma together. Electrical currents flowing in the plasma itself are essential for making the internal magnetic fields needed for confinement. Plasma doughnuts normally carry large electrical currents throughout their volume but researchers expected the direction of the current could be changed back and forth.

However, in recent experiments at the Joint European Torus (JET) and JT-60U tokamaks in England and Japan, researchers tried to reverse the current and found, to their surprise, that the current doughnut became hollow.



Now computer simulations conducted by researchers at the DOE’s Princeton Plasma Physics Laboratory (PPPL) using supercomputers at the National Energy Research Supercomputer Center have explained this phenomenon. Instead of the electric current reversing direction, the plasma experiences magnetic reconnection (see Highlight 4) and the core becomes stabilized with zero current. As soon as a current tries to reverse in the center, it is pulled into the outer ring. (See images.) This new understanding should allow a more practical design of compact next-generation fusion experiments.


Contacts
Joshua Breslau, PPPL, 609-243-2677, jbreslau@pppl.gov

David Harris | EurekAlert!
Further information:
http://www.aps.org/meet/DPP02/baps/press/press5.html
http://www.aps.org/meet/DPP02/baps/abs/S610005.html

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>