Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Images send by stars

06.11.2002


The research team of the Public University of Navarre (Basque Country), under the supervision of professor Ramon Gonzalo Garcia of the department of Electric and Electronic Engineering, is participating in a project of the European Space Agency. The final objective is the design of a camera that, working in the range of millimetric frequencies, will be able to obtain images send by different bodies, for example, stars.

The project named “Photonic antenna front-ends: Photonic crystals: Materials selection and fabrication. RF design of a photonic bandgap antenna” has a budget of 450,000 euros. Researchers of Rutherford Appleton Laboratory (England), the University of Eindhoven (Holland) and the company CMP of Madrid participate in this project. CMP will participate in the first stage of development of the project.

Image camera



An image camera allows seeing images that are not usually captured. For example, in the frequency in which this equipment works, the camera is able to see through the clothes. In fact, some companies are interested to commercialise it.

The applications of astronomy allow making a complete study of the space, as the main part of gas emissions, such as hydrogen or helium, are within this range of frequency. They are also interesting for the atmospheric research, where atmospheric effects may be study from a new perspective. The European Space Agency is interested in both applications.

Applications in medicine

The research team of the Public University of Navarre is working specifically in the integration of antennas on PBG technology to reach the final receptor. This technology is based on PBG structures that are periodic artificial dielectrics. They can prevent the spreading of electromagnetic waves in any direction of space.

The main problems found in this type of technology are the high price and the excessive volume (limiting the number of pixels) of the components. However, new lithographic techniques reduce the cost, volume and enable the production and the assembly. In addition, the actual development of the “Photonic Band Gap” (PGB) structures avoid the connection by undesirable waves between the flat antenna and enable the integration of active elements together with those antennas. All that has drawn the attention on the development of image cameras (CCD) in this range of frequencies, so that in a near future they may be applied in many other fields, such as medicine, communications, security or aeronautics.

These applications can be used in autonomous systems of airplane landings, systems that avoid the collision of autos and systems of air-traffic control. All that is possible because the millimetric frequencies are transparent in certain materials. In addition, they can see through clothes, smoke, clouds, windows, paper and even skin. That way, they could be used to detect skin cancer.

The project in which the researchers of the Public University of Navarre are working is being developed in two phases. In the first one, they are working in the design of PBG structures that then will be produced in England, in the Rutherford Appleton Laboratory. In the second phase of the project the antenna will be produced, also in England.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/index.asp?Gelaxka=1&hizk=I

More articles from Physics and Astronomy:

nachricht Organic light-emitting diodes become brighter and more durable
28.05.2018 | Technische Universität Dresden

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>