Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Images send by stars

06.11.2002


The research team of the Public University of Navarre (Basque Country), under the supervision of professor Ramon Gonzalo Garcia of the department of Electric and Electronic Engineering, is participating in a project of the European Space Agency. The final objective is the design of a camera that, working in the range of millimetric frequencies, will be able to obtain images send by different bodies, for example, stars.

The project named “Photonic antenna front-ends: Photonic crystals: Materials selection and fabrication. RF design of a photonic bandgap antenna” has a budget of 450,000 euros. Researchers of Rutherford Appleton Laboratory (England), the University of Eindhoven (Holland) and the company CMP of Madrid participate in this project. CMP will participate in the first stage of development of the project.

Image camera



An image camera allows seeing images that are not usually captured. For example, in the frequency in which this equipment works, the camera is able to see through the clothes. In fact, some companies are interested to commercialise it.

The applications of astronomy allow making a complete study of the space, as the main part of gas emissions, such as hydrogen or helium, are within this range of frequency. They are also interesting for the atmospheric research, where atmospheric effects may be study from a new perspective. The European Space Agency is interested in both applications.

Applications in medicine

The research team of the Public University of Navarre is working specifically in the integration of antennas on PBG technology to reach the final receptor. This technology is based on PBG structures that are periodic artificial dielectrics. They can prevent the spreading of electromagnetic waves in any direction of space.

The main problems found in this type of technology are the high price and the excessive volume (limiting the number of pixels) of the components. However, new lithographic techniques reduce the cost, volume and enable the production and the assembly. In addition, the actual development of the “Photonic Band Gap” (PGB) structures avoid the connection by undesirable waves between the flat antenna and enable the integration of active elements together with those antennas. All that has drawn the attention on the development of image cameras (CCD) in this range of frequencies, so that in a near future they may be applied in many other fields, such as medicine, communications, security or aeronautics.

These applications can be used in autonomous systems of airplane landings, systems that avoid the collision of autos and systems of air-traffic control. All that is possible because the millimetric frequencies are transparent in certain materials. In addition, they can see through clothes, smoke, clouds, windows, paper and even skin. That way, they could be used to detect skin cancer.

The project in which the researchers of the Public University of Navarre are working is being developed in two phases. In the first one, they are working in the design of PBG structures that then will be produced in England, in the Rutherford Appleton Laboratory. In the second phase of the project the antenna will be produced, also in England.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/index.asp?Gelaxka=1&hizk=I

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>