Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Images send by stars

06.11.2002


The research team of the Public University of Navarre (Basque Country), under the supervision of professor Ramon Gonzalo Garcia of the department of Electric and Electronic Engineering, is participating in a project of the European Space Agency. The final objective is the design of a camera that, working in the range of millimetric frequencies, will be able to obtain images send by different bodies, for example, stars.

The project named “Photonic antenna front-ends: Photonic crystals: Materials selection and fabrication. RF design of a photonic bandgap antenna” has a budget of 450,000 euros. Researchers of Rutherford Appleton Laboratory (England), the University of Eindhoven (Holland) and the company CMP of Madrid participate in this project. CMP will participate in the first stage of development of the project.

Image camera



An image camera allows seeing images that are not usually captured. For example, in the frequency in which this equipment works, the camera is able to see through the clothes. In fact, some companies are interested to commercialise it.

The applications of astronomy allow making a complete study of the space, as the main part of gas emissions, such as hydrogen or helium, are within this range of frequency. They are also interesting for the atmospheric research, where atmospheric effects may be study from a new perspective. The European Space Agency is interested in both applications.

Applications in medicine

The research team of the Public University of Navarre is working specifically in the integration of antennas on PBG technology to reach the final receptor. This technology is based on PBG structures that are periodic artificial dielectrics. They can prevent the spreading of electromagnetic waves in any direction of space.

The main problems found in this type of technology are the high price and the excessive volume (limiting the number of pixels) of the components. However, new lithographic techniques reduce the cost, volume and enable the production and the assembly. In addition, the actual development of the “Photonic Band Gap” (PGB) structures avoid the connection by undesirable waves between the flat antenna and enable the integration of active elements together with those antennas. All that has drawn the attention on the development of image cameras (CCD) in this range of frequencies, so that in a near future they may be applied in many other fields, such as medicine, communications, security or aeronautics.

These applications can be used in autonomous systems of airplane landings, systems that avoid the collision of autos and systems of air-traffic control. All that is possible because the millimetric frequencies are transparent in certain materials. In addition, they can see through clothes, smoke, clouds, windows, paper and even skin. That way, they could be used to detect skin cancer.

The project in which the researchers of the Public University of Navarre are working is being developed in two phases. In the first one, they are working in the design of PBG structures that then will be produced in England, in the Rutherford Appleton Laboratory. In the second phase of the project the antenna will be produced, also in England.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/index.asp?Gelaxka=1&hizk=I

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>