Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Images send by stars

06.11.2002


The research team of the Public University of Navarre (Basque Country), under the supervision of professor Ramon Gonzalo Garcia of the department of Electric and Electronic Engineering, is participating in a project of the European Space Agency. The final objective is the design of a camera that, working in the range of millimetric frequencies, will be able to obtain images send by different bodies, for example, stars.

The project named “Photonic antenna front-ends: Photonic crystals: Materials selection and fabrication. RF design of a photonic bandgap antenna” has a budget of 450,000 euros. Researchers of Rutherford Appleton Laboratory (England), the University of Eindhoven (Holland) and the company CMP of Madrid participate in this project. CMP will participate in the first stage of development of the project.

Image camera



An image camera allows seeing images that are not usually captured. For example, in the frequency in which this equipment works, the camera is able to see through the clothes. In fact, some companies are interested to commercialise it.

The applications of astronomy allow making a complete study of the space, as the main part of gas emissions, such as hydrogen or helium, are within this range of frequency. They are also interesting for the atmospheric research, where atmospheric effects may be study from a new perspective. The European Space Agency is interested in both applications.

Applications in medicine

The research team of the Public University of Navarre is working specifically in the integration of antennas on PBG technology to reach the final receptor. This technology is based on PBG structures that are periodic artificial dielectrics. They can prevent the spreading of electromagnetic waves in any direction of space.

The main problems found in this type of technology are the high price and the excessive volume (limiting the number of pixels) of the components. However, new lithographic techniques reduce the cost, volume and enable the production and the assembly. In addition, the actual development of the “Photonic Band Gap” (PGB) structures avoid the connection by undesirable waves between the flat antenna and enable the integration of active elements together with those antennas. All that has drawn the attention on the development of image cameras (CCD) in this range of frequencies, so that in a near future they may be applied in many other fields, such as medicine, communications, security or aeronautics.

These applications can be used in autonomous systems of airplane landings, systems that avoid the collision of autos and systems of air-traffic control. All that is possible because the millimetric frequencies are transparent in certain materials. In addition, they can see through clothes, smoke, clouds, windows, paper and even skin. That way, they could be used to detect skin cancer.

The project in which the researchers of the Public University of Navarre are working is being developed in two phases. In the first one, they are working in the design of PBG structures that then will be produced in England, in the Rutherford Appleton Laboratory. In the second phase of the project the antenna will be produced, also in England.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/index.asp?Gelaxka=1&hizk=I

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>