Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetism shapes beauty in the heavens

01.11.2002


Using a technique based on the work of the 1902 Nobel Prizewinner, Pieter Zeeman, an international team of astronomers have, for the first time, provided conclusive proof that the magnetic field close to a number of aging stars is 10 to 100 times stronger than that of our own Sun. These observations suggest a solution to the long outstanding problem as to how, at the end of their lives, a perfectly spherical star can give rise to the complex and often far from spherical structure seen in the resulting planetary nebula - some of the most beautiful objects in our heavens.


The main image is of the "Hourglass" Planetary Nebula observed by the Hubble Space Telescope. The inset image is that of an old "red giant" star of the type observed in the observations, also imaged by the Hubble Space Telescope



When stars like our Sun reach the end of their lives, they eject a large amount of material into the space around them. This material, produced by nuclear fusion reactions in the star, forms a thick dust shell which eventually evolves into a planetary nebula - so called because they appear rather like planetary discs. Due to turbulent gas flows around the star the strong magnetic fields that have been discovered will have very different shapes. The material which is ejected from the star "feels" this strong magnetic field and so, as a result, the planetary nebula can have a very complicated structure. The ejected material, containing elements such as carbon and oxygen, in eventually recycled into new stars and planets and the building blocks of life itself.

The group, lead by Wouter Vlemmings of Leiden Observatory, observed 4 old stars with the U.S. National Science Foundation`s VLBA, the network of radio telescopes operated by the American National Radio Astronomy Observatory. They detected radio emission which originates from clouds of water vapor ejected by the stars. In some circumstances, such a cloud can become a maser: the equivalent of a laser for radiation with longer wavelengths. One specific frequency of the emitted radiation, which is characteristic for the H2O molecule, is amplified enormously, resulting in a bright, clear signal. In this signal, the group was able to detect the Zeeman-effect for the first time: subtle changes in the spectrum of the emission that can only be caused by a strong magnetic field at the location of the maser.


The magnetic fields measured are as strong as the magnetic field at the Earth`s surface, between 0.5 and 1 Gauss. As observations have shown that the water masers occur at a large distance from the star (at about twice the distance between the furthest planet in our solar system, Pluto, and the Sun), the magnetic field strength at the surface of the star will be much higher, approximately 50 to 500 Gauss, which is 10 to 100 times the magnetic field strength of the Sun. This is sufficiently strong that the magnetic field can play an important role in the formation of aspherical planetary nebulae and in the process of mass-loss which creates the dusty circumstellar envelopes.

The Zeeman-effect, which has enabled these observations to be made, was named after the Leiden physicist Pieter Zeeman, who discovered the effect of a magnetic field on the spectrum of a light source in 1896. As this effect is extremely small in water molecules, the observations for the research by Vlemmings had to be extremely precise. Because of this, the data of the different telescopes of the VLBI-network were specially processed in the correlator at Socorro, New Mexico, USA to give the highest possible accuracy.

The astronomers, whose work has just been published in Astronomy & Astrophysics, were Wouter Vlemmings of Leiden Observatory, Philip Diamond of the University of Manchester and Huib Jan van Langevelde of the Joint Institute for VLBI in Europe (JIVE).

Wouter Vlemmings | alfa
Further information:
http://www.jb.man.ac.uk/news/magnetism/

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>