Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glasgow astronomers explain hot star disks

01.11.2002


Astronomers have been puzzled for decades as to how the rings of hot gas surrounding certain types of star are formed. Now a team of scientists from the Universities of Glasgow and Wisconsin believe they have found the answer. The team studied a type of young, hot star, known as a "Be star", that has a disk of glowing gas around it, similar to the rings surrounding Saturn. Until now, no one has been able to account for how these rings form but in a paper published this month*, the team suggest an answer.


Artist’s impression of a Be Star



The gas ring surrounding a Be Star may appear and then disappear, possibly reforming at a later time. Material in the disk is attracted back towards the star by the pull of gravity, but if it has enough energy it can escape into space, contributing to the stellar wind.

The new theory reveals why this material is held in a disk at some distance from the star instead of either being pulled closer or flying away into space.


Deborah Telfer of Glasgow University explains
"Our model relies on the existence of a magnetic field around Be stars producing a ‘Magnetically Torqued Disk’. Magnetic field lines channel stellar wind material leaving the surface of the star down towards the equatorial plane. A disk then forms in the region where particles have sufficient angular velocity to balance gravity. In the outer regions, the weaker magnetic field lines should burst open allowing particles to form part of the general stellar wind."

Previously, the Wind Compressed Disk Model (Bjorkman and Cassinelli, 1993) was regarded as one of the most successful explanations of circumstellar disks. However, it predicts disks that are out-flowing (i.e. the material moves from the star to the disk and then away into space) and expanding. Yet Be stars are observed to have circumstellar Keplerian disks, meaning that the disks are supported against gravity by rotation rather than gas or radiation pressure.

Deborah has been working with Joseph Cassinelli of Wisconsin on the new model for Be star disks and they are delighted at the success of their results.

These suggest that only a narrow range of types of star would form a detectable Magnetically Torqued Disk and be seen as Be stars.

Heavier stars would require an unreasonably large magnetic field while lighter stars would produce disks too small to be detected. More work is needed to explain every aspect of observational evidence but we may finally be reaching an understanding of what
produces these Saturn-like stars.

Julia Maddock | alfa

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>