Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab’s Hall A experiment examines how energy becomes matter

01.11.2002



Just as matter can be converted into energy, so too can energy become matter. That’s what five-dozen Jefferson Lab researchers were counting on for an experiment in Hall A

Albert Einstein figured it out by 1905, as he was formulating his special theory of relativity: while you can’t exactly get something from nothing, you can come close. His famous formula, E=MC2, works both ways. Just as matter can be converted into energy, so too can energy become matter.

That’s just what five dozen researchers were counting on with a Jefferson Lab experiment in Hall A that used the Lab’s electron beam and a liquid hydrogen target to bring to life an unusual particle known as a kaon. The kaon’s unique structure could prove of great help to cosmologists, who should be able to use the results of experiments like the Hall A effort to develop structural models of stellar objects made up of exotic, or "strange" matter, matter that includes kaons as part of their own subatomic architectures. Preliminary findings indicate that kaon production results from the interactions of the particles of light known as photons. The photons create more than just kaons, however. They also produce other particles, known as lambda and sigma, with their own distinctive quark structure. All arise from a constantly churning sea of "virtual" particles that can’t exist until bumped by a jolt of energy such as that provided by the Lab’s accelerator.



"When these things get produced, we’re trying to understand how they’re made," says experiment co-spokesperson Pete Markowitz, associate professor of physics at Florida International University in Miami. "And: what do they look like? We’re trying to come up with a detailed picture of how quarks ’live’ in the nucleus."

The first challenge confronting the Hall A researchers in their experimental run that concluded this past March was to actually make enough of the rare, fleeting particles. The task was a difficult one, considering that kaons contain a matter-antimatter pair of an "anti-strange" quark and one "up" quark (quarks are thought by many scientists to be the basic building blocks of matter). Should a particle of antimatter collide with one of normal matter, both particles are instantly converted to energy, a process that doesn’t lend itself to easy observation.

The Hall A scientists succeeded in making enough kaons for long enough to be able to probe the particle’s internal details. In essence, the researchers "paid" for the kaon-constituent quarks to come into existence by using the electron beam’s energy. "We created a kaon essentially out of nothing by giving it a jolt of energy," Markowitz says. "Then our job was to measure the properties of that creation. We wanted to determine which parts of the kaon are quark-like. We’d like to identify exactly how kaons get made. What description, theoretically speaking, is the most appropriate?"

Planning for the first kaon experiment began in 1993 when Markowitz first conceived the idea. A follow-on investigation that will study another strange-matter particle, known as a hyperon, is scheduled for 2004 and will involve a team of up to 80 researchers, most of whom worked on the kaon experiment.

"[The hyperon study] will be the first time in history that people will be able to see what’s going on, and at high resolution," Markowitz says. "We’ll be creating a new form of matter. I’m really excited about this experiment."

by James Schultz

Linda Ware | EurekAlert!
Further information:
http://www.jlab.org/

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>