Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Jefferson Lab’s Hall A experiment examines how energy becomes matter


Just as matter can be converted into energy, so too can energy become matter. That’s what five-dozen Jefferson Lab researchers were counting on for an experiment in Hall A

Albert Einstein figured it out by 1905, as he was formulating his special theory of relativity: while you can’t exactly get something from nothing, you can come close. His famous formula, E=MC2, works both ways. Just as matter can be converted into energy, so too can energy become matter.

That’s just what five dozen researchers were counting on with a Jefferson Lab experiment in Hall A that used the Lab’s electron beam and a liquid hydrogen target to bring to life an unusual particle known as a kaon. The kaon’s unique structure could prove of great help to cosmologists, who should be able to use the results of experiments like the Hall A effort to develop structural models of stellar objects made up of exotic, or "strange" matter, matter that includes kaons as part of their own subatomic architectures. Preliminary findings indicate that kaon production results from the interactions of the particles of light known as photons. The photons create more than just kaons, however. They also produce other particles, known as lambda and sigma, with their own distinctive quark structure. All arise from a constantly churning sea of "virtual" particles that can’t exist until bumped by a jolt of energy such as that provided by the Lab’s accelerator.

"When these things get produced, we’re trying to understand how they’re made," says experiment co-spokesperson Pete Markowitz, associate professor of physics at Florida International University in Miami. "And: what do they look like? We’re trying to come up with a detailed picture of how quarks ’live’ in the nucleus."

The first challenge confronting the Hall A researchers in their experimental run that concluded this past March was to actually make enough of the rare, fleeting particles. The task was a difficult one, considering that kaons contain a matter-antimatter pair of an "anti-strange" quark and one "up" quark (quarks are thought by many scientists to be the basic building blocks of matter). Should a particle of antimatter collide with one of normal matter, both particles are instantly converted to energy, a process that doesn’t lend itself to easy observation.

The Hall A scientists succeeded in making enough kaons for long enough to be able to probe the particle’s internal details. In essence, the researchers "paid" for the kaon-constituent quarks to come into existence by using the electron beam’s energy. "We created a kaon essentially out of nothing by giving it a jolt of energy," Markowitz says. "Then our job was to measure the properties of that creation. We wanted to determine which parts of the kaon are quark-like. We’d like to identify exactly how kaons get made. What description, theoretically speaking, is the most appropriate?"

Planning for the first kaon experiment began in 1993 when Markowitz first conceived the idea. A follow-on investigation that will study another strange-matter particle, known as a hyperon, is scheduled for 2004 and will involve a team of up to 80 researchers, most of whom worked on the kaon experiment.

"[The hyperon study] will be the first time in history that people will be able to see what’s going on, and at high resolution," Markowitz says. "We’ll be creating a new form of matter. I’m really excited about this experiment."

by James Schultz

Linda Ware | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>