Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab’s Hall A experiment examines how energy becomes matter

01.11.2002



Just as matter can be converted into energy, so too can energy become matter. That’s what five-dozen Jefferson Lab researchers were counting on for an experiment in Hall A

Albert Einstein figured it out by 1905, as he was formulating his special theory of relativity: while you can’t exactly get something from nothing, you can come close. His famous formula, E=MC2, works both ways. Just as matter can be converted into energy, so too can energy become matter.

That’s just what five dozen researchers were counting on with a Jefferson Lab experiment in Hall A that used the Lab’s electron beam and a liquid hydrogen target to bring to life an unusual particle known as a kaon. The kaon’s unique structure could prove of great help to cosmologists, who should be able to use the results of experiments like the Hall A effort to develop structural models of stellar objects made up of exotic, or "strange" matter, matter that includes kaons as part of their own subatomic architectures. Preliminary findings indicate that kaon production results from the interactions of the particles of light known as photons. The photons create more than just kaons, however. They also produce other particles, known as lambda and sigma, with their own distinctive quark structure. All arise from a constantly churning sea of "virtual" particles that can’t exist until bumped by a jolt of energy such as that provided by the Lab’s accelerator.



"When these things get produced, we’re trying to understand how they’re made," says experiment co-spokesperson Pete Markowitz, associate professor of physics at Florida International University in Miami. "And: what do they look like? We’re trying to come up with a detailed picture of how quarks ’live’ in the nucleus."

The first challenge confronting the Hall A researchers in their experimental run that concluded this past March was to actually make enough of the rare, fleeting particles. The task was a difficult one, considering that kaons contain a matter-antimatter pair of an "anti-strange" quark and one "up" quark (quarks are thought by many scientists to be the basic building blocks of matter). Should a particle of antimatter collide with one of normal matter, both particles are instantly converted to energy, a process that doesn’t lend itself to easy observation.

The Hall A scientists succeeded in making enough kaons for long enough to be able to probe the particle’s internal details. In essence, the researchers "paid" for the kaon-constituent quarks to come into existence by using the electron beam’s energy. "We created a kaon essentially out of nothing by giving it a jolt of energy," Markowitz says. "Then our job was to measure the properties of that creation. We wanted to determine which parts of the kaon are quark-like. We’d like to identify exactly how kaons get made. What description, theoretically speaking, is the most appropriate?"

Planning for the first kaon experiment began in 1993 when Markowitz first conceived the idea. A follow-on investigation that will study another strange-matter particle, known as a hyperon, is scheduled for 2004 and will involve a team of up to 80 researchers, most of whom worked on the kaon experiment.

"[The hyperon study] will be the first time in history that people will be able to see what’s going on, and at high resolution," Markowitz says. "We’ll be creating a new form of matter. I’m really excited about this experiment."

by James Schultz

Linda Ware | EurekAlert!
Further information:
http://www.jlab.org/

More articles from Physics and Astronomy:

nachricht Australian technology installed on world’s largest single-dish radio telescope
26.09.2016 | International Centre for Radio Astronomy Research (ICRAR)

nachricht How to merge two black holes in a simple way
26.09.2016 | Plataforma SINC

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>