Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some cosmic rays originate within solar system, researchers find

31.10.2002


Researchers have found that a portion of anomalous cosmic rays -- charged particles accelerated to enormous energies by the solar wind -- results from interactions with dust grains from a belt of comet-sized objects near Pluto’s orbit. These objects make up what is known as the Kuiper Belt, a remnant of the formation of the solar system.



"This novel finding shows how dust in the cosmos may play an important role for producing the most energetic particles known," says Dr. Nathan Schwadron, a senior research scientist in the Space Science and Engineering Division of Southwest Research Institute (SwRI) in San Antonio, Texas. The study by Schwadron and colleagues at SwRI and the University of Michigan was published October 30 in Geophysical Research Letters, a journal of the American Geophysical Union.

"Dust grains are produced in vast amounts through collisions of Kuiper Belt objects," says Schwadron. "These particles give us a glimpse of the early stages of our solar system when the dust content was much larger, and could parallel other more dusty stellar systems that exist now."


Recent observations of anomalous cosmic rays are puzzling because of the unexpected presence of iron, silicon and carbon, notes Schwadron. "This finding varies from the traditional explanation of anomalous cosmic rays which were thought to be devoid of easily charged elements."

The interstellar medium has lots of carbon, silicon and iron atoms, but electrical charging (ionization) of these elements prevents them from penetrating deeply within the solar system. "Our team looked for a source already inside the solar system to account for the unusual anomalous cosmic rays -- and we found one in the tiny comet-like grains from the nearby Kuiper Belt," says Schwadron.

As the grains produced by collisions in the Kuiper Belt drift in toward the sun, they are bombarded by solar wind particles, which causes sputtering and frees the carbon, silicon and iron atoms from within. At that point, those particles interact with solar radiation, transforming them into ions (charged particles). The solar wind then sweeps them out and accelerates them to anomalous cosmic ray energies at the edge of the solar system, where they are bounced to and fro by magnetic fields in the solar wind and in the medium beyond the solar system, according to Schwadron.

Tom Bogdan, program director in the NSF Division of Atmospheric Sciences, which partly funded the research, says, "This is a big step toward solving the long-standing mystery of the origin of the anomalous component of cosmic rays. The research underscores the power of remote sensing: Sampling of Kuiper Belt material with unmanned space probes is a huge and difficult enterprise. The detection locally of the anomalous cosmic ray component provides information on the conditions that prevail in this remote region of our solar system."

"Anomalous cosmic rays" are so named because they form in the relative vicinity of the Earth, near the sun, and have lower energy than galactic and intergalactic cosmic rays, which form in the far reaches of the galaxy and beyond. Cosmic rays, the most energetic particles in the cosmos, move throughout the universe at light speed and constantly bombard the Earth.

"The discovery that anomalous cosmic rays can be generated from material in the Kuiper Belt provides a tool for understanding its mass distribution and composition and for probing the plasma-dust interactions in space," says Schwadron.

Cosmic rays also are believed to play a role in evolution. "Cosmic rays are a double-edged sword. They cause genetic mutation and are harmful to living organisms, but on the upside stimulate biological evolution," Schwadron says. "Cosmic rays are our only available sample of matter from the far reaches of the distant galaxy, and from other galaxies. They can tell us a lot about what’s in the universe, and we can now use them to study what’s in the Kuiper Belt. Their relationship to the creation or maintenance of life is also worth a closer look."

This program was supported with funding from NSF, NASA, and SwRI.

Harvey Leifert | AGU
Further information:
http://www.agu.org/

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>