Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some cosmic rays originate within solar system, researchers find

31.10.2002


Researchers have found that a portion of anomalous cosmic rays -- charged particles accelerated to enormous energies by the solar wind -- results from interactions with dust grains from a belt of comet-sized objects near Pluto’s orbit. These objects make up what is known as the Kuiper Belt, a remnant of the formation of the solar system.



"This novel finding shows how dust in the cosmos may play an important role for producing the most energetic particles known," says Dr. Nathan Schwadron, a senior research scientist in the Space Science and Engineering Division of Southwest Research Institute (SwRI) in San Antonio, Texas. The study by Schwadron and colleagues at SwRI and the University of Michigan was published October 30 in Geophysical Research Letters, a journal of the American Geophysical Union.

"Dust grains are produced in vast amounts through collisions of Kuiper Belt objects," says Schwadron. "These particles give us a glimpse of the early stages of our solar system when the dust content was much larger, and could parallel other more dusty stellar systems that exist now."


Recent observations of anomalous cosmic rays are puzzling because of the unexpected presence of iron, silicon and carbon, notes Schwadron. "This finding varies from the traditional explanation of anomalous cosmic rays which were thought to be devoid of easily charged elements."

The interstellar medium has lots of carbon, silicon and iron atoms, but electrical charging (ionization) of these elements prevents them from penetrating deeply within the solar system. "Our team looked for a source already inside the solar system to account for the unusual anomalous cosmic rays -- and we found one in the tiny comet-like grains from the nearby Kuiper Belt," says Schwadron.

As the grains produced by collisions in the Kuiper Belt drift in toward the sun, they are bombarded by solar wind particles, which causes sputtering and frees the carbon, silicon and iron atoms from within. At that point, those particles interact with solar radiation, transforming them into ions (charged particles). The solar wind then sweeps them out and accelerates them to anomalous cosmic ray energies at the edge of the solar system, where they are bounced to and fro by magnetic fields in the solar wind and in the medium beyond the solar system, according to Schwadron.

Tom Bogdan, program director in the NSF Division of Atmospheric Sciences, which partly funded the research, says, "This is a big step toward solving the long-standing mystery of the origin of the anomalous component of cosmic rays. The research underscores the power of remote sensing: Sampling of Kuiper Belt material with unmanned space probes is a huge and difficult enterprise. The detection locally of the anomalous cosmic ray component provides information on the conditions that prevail in this remote region of our solar system."

"Anomalous cosmic rays" are so named because they form in the relative vicinity of the Earth, near the sun, and have lower energy than galactic and intergalactic cosmic rays, which form in the far reaches of the galaxy and beyond. Cosmic rays, the most energetic particles in the cosmos, move throughout the universe at light speed and constantly bombard the Earth.

"The discovery that anomalous cosmic rays can be generated from material in the Kuiper Belt provides a tool for understanding its mass distribution and composition and for probing the plasma-dust interactions in space," says Schwadron.

Cosmic rays also are believed to play a role in evolution. "Cosmic rays are a double-edged sword. They cause genetic mutation and are harmful to living organisms, but on the upside stimulate biological evolution," Schwadron says. "Cosmic rays are our only available sample of matter from the far reaches of the distant galaxy, and from other galaxies. They can tell us a lot about what’s in the universe, and we can now use them to study what’s in the Kuiper Belt. Their relationship to the creation or maintenance of life is also worth a closer look."

This program was supported with funding from NSF, NASA, and SwRI.

Harvey Leifert | AGU
Further information:
http://www.agu.org/

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>