Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some cosmic rays originate within solar system, researchers find

31.10.2002


Researchers have found that a portion of anomalous cosmic rays -- charged particles accelerated to enormous energies by the solar wind -- results from interactions with dust grains from a belt of comet-sized objects near Pluto’s orbit. These objects make up what is known as the Kuiper Belt, a remnant of the formation of the solar system.



"This novel finding shows how dust in the cosmos may play an important role for producing the most energetic particles known," says Dr. Nathan Schwadron, a senior research scientist in the Space Science and Engineering Division of Southwest Research Institute (SwRI) in San Antonio, Texas. The study by Schwadron and colleagues at SwRI and the University of Michigan was published October 30 in Geophysical Research Letters, a journal of the American Geophysical Union.

"Dust grains are produced in vast amounts through collisions of Kuiper Belt objects," says Schwadron. "These particles give us a glimpse of the early stages of our solar system when the dust content was much larger, and could parallel other more dusty stellar systems that exist now."


Recent observations of anomalous cosmic rays are puzzling because of the unexpected presence of iron, silicon and carbon, notes Schwadron. "This finding varies from the traditional explanation of anomalous cosmic rays which were thought to be devoid of easily charged elements."

The interstellar medium has lots of carbon, silicon and iron atoms, but electrical charging (ionization) of these elements prevents them from penetrating deeply within the solar system. "Our team looked for a source already inside the solar system to account for the unusual anomalous cosmic rays -- and we found one in the tiny comet-like grains from the nearby Kuiper Belt," says Schwadron.

As the grains produced by collisions in the Kuiper Belt drift in toward the sun, they are bombarded by solar wind particles, which causes sputtering and frees the carbon, silicon and iron atoms from within. At that point, those particles interact with solar radiation, transforming them into ions (charged particles). The solar wind then sweeps them out and accelerates them to anomalous cosmic ray energies at the edge of the solar system, where they are bounced to and fro by magnetic fields in the solar wind and in the medium beyond the solar system, according to Schwadron.

Tom Bogdan, program director in the NSF Division of Atmospheric Sciences, which partly funded the research, says, "This is a big step toward solving the long-standing mystery of the origin of the anomalous component of cosmic rays. The research underscores the power of remote sensing: Sampling of Kuiper Belt material with unmanned space probes is a huge and difficult enterprise. The detection locally of the anomalous cosmic ray component provides information on the conditions that prevail in this remote region of our solar system."

"Anomalous cosmic rays" are so named because they form in the relative vicinity of the Earth, near the sun, and have lower energy than galactic and intergalactic cosmic rays, which form in the far reaches of the galaxy and beyond. Cosmic rays, the most energetic particles in the cosmos, move throughout the universe at light speed and constantly bombard the Earth.

"The discovery that anomalous cosmic rays can be generated from material in the Kuiper Belt provides a tool for understanding its mass distribution and composition and for probing the plasma-dust interactions in space," says Schwadron.

Cosmic rays also are believed to play a role in evolution. "Cosmic rays are a double-edged sword. They cause genetic mutation and are harmful to living organisms, but on the upside stimulate biological evolution," Schwadron says. "Cosmic rays are our only available sample of matter from the far reaches of the distant galaxy, and from other galaxies. They can tell us a lot about what’s in the universe, and we can now use them to study what’s in the Kuiper Belt. Their relationship to the creation or maintenance of life is also worth a closer look."

This program was supported with funding from NSF, NASA, and SwRI.

Harvey Leifert | AGU
Further information:
http://www.agu.org/

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>