Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorado U. space team studying water, ice and potential life on Jupiter moon, Europa

25.10.2002


The oozing of glacial material in the floating ice shell on Jupiter’s moon Europa has important implications for future exploration of the enigmatic moon and prospects of life in its ice-covered ocean, according to a University of Colorado at Boulder professor.


Europa’s enigmatic ridged surface is peppered by pits and spots termed lenticulae, which is Latin for freckles. In this area, the lenticulae are all about 6 miles in diameter. Their similar sizes and spacing suggest that Europa’s icy shell is churning away like a lava lamp: warmer ice moves upward from the bottom of the ice shell, while colder near-surface ice sinks downward. Reddish ice that erupts onto the surface may hold clues about the composition of Europa’s subsurface ocean, and whether that ocean supports life. Photo courtesy Jet Prolpulsion Laboratory



Robert Pappalardo, an assistant professor in the astrophysical and planetary sciences department and one of the world’s foremost Europa experts, said the icy moon is believed to contain an ocean some 13 miles under its icy surface. Satellite images appear to indicate surface warping -- including domes and reddish spots -- showing that "elevators" of sorts transport material up and down from the ocean to the surface, said the planetary scientist.

"Europa acts like a planetary lava lamp, carrying material from near the surface down to the ocean, and, if they exist, potentially transporting organisms from the ocean up toward the surface," he said. "Just a mile or two beneath the surface, the conditions may be warm enough to allow organisms to survive the journey."


The "thick shell" model of Europa has implications for the future exploration of the moon and whether the existence of life is possible in the lightless depths beneath the planet’s surface, said Pappalardo. "It would be very difficult for a future spacecraft to drill all the way through a 13-mile-deep ice shell to search for life in the underlying ocean. But the motions of glacial ice may transport ocean material, and any life it might contain, to the surface."

Pappalardo and his research group at CU-Boulder’s Laboratory for Atmospheric and Space Physics are attempting to tie together pieces of an elaborate puzzle to assemble a comprehensive model of how Europa functions. The results are being reported at the Geological Society of America meeting in Denver Oct. 27 to Nov. 1.

Under similar conditions in Arctic ice on Earth, organisms can remain in a state of hibernation until exposed to warmer and wetter conditions, he said. "If life exists in Europa’s ocean, organisms might be carried on a slow ride from the bottom to the top of Europa’s icy crust. Sampling the surface composition may provide direct insights into the nature of the ocean deep below, and could plausibly reveal dormant organisms if they exist within Europa."

CU-Boulder graduate student Amy Barr is developing a computer model to illustrate the Europa ice motions, said Pappalardo. She is modifying a computer model that has been used to understand Earth’s plate tectonics and to better understand Europa’s geology, including how nutrients created by ice irradiation at Europa’s surface might be transported down to the moon’s oceans.

Barr’s ice-convection model, the most sophisticated yet applied to Europa, may show that organisms could thrive below the thick cap of ice, Pappalardo said. It incorporates information on how the satellite’s thick ice shell is heated and how it flows as it is squeezed by the gravity of Jupiter, which raises huge tides on Europa.

CU undergraduate Michelle Stempel is analyzing Europa’s pattern of cracks and ridges to understand how the Jupiter tides have fractured the surface, and over what time scales the cracking has occurred. By matching stress patterns to surface geological features, she is studying where and how the surface cracks are created in response to short- and long-term deformation of the thick icy shell overlying an ocean.

Pappalardo also has teamed with Francis Nimmo of University College, London, to understand the similarities and differences between Europa and its sibling Jovian moon, Ganymede. Ganymede may hide an ocean beneath its icy crust much deeper than Europa’s, although Ganymede’s era of geological activity has likely long ceased. By analyzing the topography of fractures on Ganymede, the two scientists have determined that Ganymede was once nearly as warm inside as Europa is today.

"This has important implications for the history of Ganymede, and also for how Europa’s surface is shaped today," Pappalardo said. "Ganymede may be a fossil version of Europa." The two scientists found similar internal and external forces that probably have influenced the two moons, but with different geological expressions.

In addition, Pappalardo is working with Nick Makris of the Massachusetts Institute of Technology to study how a future Europa lander could precisely determine the depth and thickness of Europa’s ocean, using the same techniques routinely used by the Navy to measure the depth and composition of Earth’s oceans. The two are presenting back-to-back talks at Denver’s GSA meeting to illustrate how the proven terrestrial technique can apply to the exotic environment of Europa.

Pappalardo recently served on a National Research Council panel that reaffirmed a spacecraft should be launched in the coming decade with the goal of orbiting Europa. The Europa Geophysical Explorer would have scientific objectives that include confirming the presence of an ocean, remotely measuring the composition of the surface and scouting out potential landing sites for a follow-on lander mission.

Robert Pappalardo | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>