Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zooming star points to supermassive black hole at the center of the Milky Way

17.10.2002


Supermassive black holes – the name given to black holes whose mass is more than 1,000,000 times the mass of the sun – can be found at the center of many galaxies. Scientists from the Weizmann Institute of Science, the Max Planck Institute for Extraterrestrial Physics, and several institutions in France have succeeded in tracking a star racing around a dark mass at the center of our galaxy. This achievement offers more support for the widely held view that the dark mass is a supermassive black hole. The findings were published in the current issue of Nature.



The scientists tracked, for the first time, a star completing an orbit around a known unusual source of radiation (a black hole candidate) in the center of our galaxy. This discovery heralds a new epoch of high precision black hole astronomy and that might help us better understand how galaxies are born and evolve.

Supermassive black holes are thought to evolve when many smaller black holes merge at the center of a galaxy, and start swallowing everything that comes their way. Such a black hole is a remnant of an exploded sun much bigger than our own. The explosion is a rare celestial phenomenon called supernova, which happens when these developed suns use up all their nuclear fuel. Without fuel to maintain the huge pressure that is required to counter gravity, the star first implodes, and then the outer layers rebound against the sun’s core and are violently ejected into space, in a process that is one of the most powerful explosions that occur in nature. Simultaneously, the massive core continues to cave in. It rapidly collapses into itself and forms a black hole.


The pull of this dark mass is so great that even light can’t escape it, rendering it invisible. "Invisible - but not powerless," said Dr. Tal Alexander, a theoretical astrophysicist at the Weizmann Institute of Science’s Physics Faculty. "The black hole’s presence is felt by its immense gravitational pull. A star that happens to be close to a supermassive black hole will orbit very rapidly around a point of seemingly empty space." Another clue is the radiation emitted by gas that is heated up just before it is swallowed forever by the black hole.

Alexander and his colleagues at the Max Planck Institute for Astrophysics tracked the orbit of the closest known star to the black hole candidate Sagittarius A*, a dark mass 3,000,000 times the mass of the sun. Following the star for 10 years, they found that it does indeed orbit Sagittarius A*. Approaching the black hole’s maw, the star reaches its highest velocity, whizzing past it at 5,000 kilometers per second.

Some astrophysicists have suggested in the past that perhaps the dark mass in the center of the Milky Way is not a black hole, but rather a dense cluster of compact stars, or even a giant blob of mysterious sub-atomic particles. It now appears that these are not viable alternatives. The new detailed analysis of the orbit, made possible by the techniques developed by the team, is fully consistent with the view that the dark mass is a supermassive black hole.

Their technique allowed precise observation of the center of the galaxy, overcoming the problem of interstellar dust permeating space. The observations were made with the new European Very Large Telescope in Chile whose detectors were developed by scientists from the Max Planck Institute for Extraterrestrial Physics, Observatoire de Paris, Office National d’Etudes et de Recherches Aerospatiales, and Observatoire de Grenoble.

Such observations could provide information on a point we know surprisingly little about: our own place in the universe. Alexander said: "We currently do not even know the earth’s exact distance from the center of our own galaxy – understanding such stellar orbits might tell us where we are."

Jeffrey J. Sussman | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>