Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Zooming star points to supermassive black hole at the center of the Milky Way


Supermassive black holes – the name given to black holes whose mass is more than 1,000,000 times the mass of the sun – can be found at the center of many galaxies. Scientists from the Weizmann Institute of Science, the Max Planck Institute for Extraterrestrial Physics, and several institutions in France have succeeded in tracking a star racing around a dark mass at the center of our galaxy. This achievement offers more support for the widely held view that the dark mass is a supermassive black hole. The findings were published in the current issue of Nature.

The scientists tracked, for the first time, a star completing an orbit around a known unusual source of radiation (a black hole candidate) in the center of our galaxy. This discovery heralds a new epoch of high precision black hole astronomy and that might help us better understand how galaxies are born and evolve.

Supermassive black holes are thought to evolve when many smaller black holes merge at the center of a galaxy, and start swallowing everything that comes their way. Such a black hole is a remnant of an exploded sun much bigger than our own. The explosion is a rare celestial phenomenon called supernova, which happens when these developed suns use up all their nuclear fuel. Without fuel to maintain the huge pressure that is required to counter gravity, the star first implodes, and then the outer layers rebound against the sun’s core and are violently ejected into space, in a process that is one of the most powerful explosions that occur in nature. Simultaneously, the massive core continues to cave in. It rapidly collapses into itself and forms a black hole.

The pull of this dark mass is so great that even light can’t escape it, rendering it invisible. "Invisible - but not powerless," said Dr. Tal Alexander, a theoretical astrophysicist at the Weizmann Institute of Science’s Physics Faculty. "The black hole’s presence is felt by its immense gravitational pull. A star that happens to be close to a supermassive black hole will orbit very rapidly around a point of seemingly empty space." Another clue is the radiation emitted by gas that is heated up just before it is swallowed forever by the black hole.

Alexander and his colleagues at the Max Planck Institute for Astrophysics tracked the orbit of the closest known star to the black hole candidate Sagittarius A*, a dark mass 3,000,000 times the mass of the sun. Following the star for 10 years, they found that it does indeed orbit Sagittarius A*. Approaching the black hole’s maw, the star reaches its highest velocity, whizzing past it at 5,000 kilometers per second.

Some astrophysicists have suggested in the past that perhaps the dark mass in the center of the Milky Way is not a black hole, but rather a dense cluster of compact stars, or even a giant blob of mysterious sub-atomic particles. It now appears that these are not viable alternatives. The new detailed analysis of the orbit, made possible by the techniques developed by the team, is fully consistent with the view that the dark mass is a supermassive black hole.

Their technique allowed precise observation of the center of the galaxy, overcoming the problem of interstellar dust permeating space. The observations were made with the new European Very Large Telescope in Chile whose detectors were developed by scientists from the Max Planck Institute for Extraterrestrial Physics, Observatoire de Paris, Office National d’Etudes et de Recherches Aerospatiales, and Observatoire de Grenoble.

Such observations could provide information on a point we know surprisingly little about: our own place in the universe. Alexander said: "We currently do not even know the earth’s exact distance from the center of our own galaxy – understanding such stellar orbits might tell us where we are."

Jeffrey J. Sussman | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>