Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploding star takes astronomers by surprise

11.10.2002


A partially exploding star, known as a nova, has recovered more quickly than expected, say scientists who have analysed new data from the ESA`s XMM-Newton X-ray satellite.



Nova explosions are not completely destructive phenomena. In fact, after an explosion occurs, the star recovers and starts shining again. Until now, astronomers have not known how long this process takes. In this case, however, the exploding star recovered in less than three years. This is surprising, given the fact that the original explosion released about 100 000 times the energy given out by our Sun in a single year.

Exploding stars come in a number of guises, the largest being supernovae. In their case, nothing is left of the star after its immense detonation, except for the ultimate of all astronomical mysteries: a black hole. However, in the case of a nova, the explosion is not so destructive and the star lives to shine another day. How long does it take to return to normal after the explosion, or outburst as astronomers prefer to call it? XMM-Newton has provided the answer - a few years at most.


A nova is composed of two stars. Their `normal` state is for one star to be pulling the other to pieces. Originally starting as two ordinary stars, they are held together by the force of their gravity. Both shine steadily into space. However, one star ages faster than the other, becoming a small, hot core known as a white dwarf star. The pair become locked in a destructive cycle in which the white dwarf pulls matter from its companion, cloaking itself with the stolen gases. Once enough gas has built up, a catastrophic nuclear reaction begins, causing a massive explosion to engulf the white dwarf. Although this is not large enough to destroy the star, it causes a giant outburst of material from the surface that disrupts the flow of material from the larger star onto the white dwarf.

The nova V2487 Oph suffered just such an outburst in 1998. Observations with ESA`s XXM-Newton satellite show that the white dwarf star has resumed `eating` its neighbour in just 2.7 years. This is faster than astronomers had previously imagined. Margarida Hernanz is the principal investigator of the research at the Institut d`Estudis Espaciales de Catalunya and Spanish Research Council, Spain. She was peering through the expanding cloud of debris from the outburst to see whether nuclear reactions were still taking place on the surface of the white dwarf. She and fellow researcher, Gloria Sala, saw that particular signature in their data but they also discovered something unexpected. A much more energetic set of X-rays signalled V2487 Oph had returned to normal and was again pulling gas from its companion.

This signal matches that of a chance observation taken in 1990, by the ROSAT X-ray satellite, during an all-sky survey, before the system was known to be a nova. That makes it the first nova to have been observed in X-rays before and after the outburst.

Understanding the nature of novae is essential to understanding the details of how our Galaxy achieved its chemical composition. Hernanz says, "Although they are not as important as supernovae at influencing the chemical evolution of the Galaxy, novae are important because they produce certain chemicals that other celestial objects do not."

Astronomers can use novae to measure distances to other galaxies. All novae explode with about the same explosive force, so they always reach similar brightnesses. However, distant objects always look dimmer. Since astronomers know how bright the nova should be, they can calculate how far away it is.

As yet, novae have not really been observed at gamma-ray energies. With the launch of Integral next week, that could well change. "Some of the radioactive elements we think are created by novae, give out gamma rays. It would be good to use Integral to attempt their detection, testing out our ideas," says Hernanz.

In the meantime, Hernanz has XMM-Newton data for another nova that she is currently analysing. Talking about her work, Fred Jansen, XMM-Newton`s Project Scientist says, "Work of this quality proves that XMM-Newton is doing what it should be doing, pushing the limits of X-ray astronomy and making new discoveries possible."

Fred Jansen | ESA
Further information:
http://www.esa.int/export/esaCP/ESACQKTHN6D_index_0.html

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>