Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers slice and dice galaxies

04.10.2002


New views of star birth and the heart of a spiral galaxy have been seen by a state-of-the-art astronomical instrument on its first night. The new UKIRT Imaging Spectrometer (UIST) has a revolutionary ability to ’slice’ any object in the sky into sections, producing a three dimensional view of the conditions throughout entire galaxies in a single observation. UIST has just been installed on the United Kingdom Infrared Telescope (UKIRT) in Hawaii.


UIST infrared image of the Omega Nebula, a site of star formation 5000 light years from Earth
Image: Joint Astronomy Centre



Project scientist Suzanne Ramsay Howat from the UK Astronomy Technology Centre (ATC) in Edinburgh said "UIST will give astronomers using UKIRT a unique way of viewing the Universe, keeping this telescope at the cutting-edge of science".

The instrument saw its ’First Light’ on the night of 24th September, when it was trained on the Omega Nebula. This nebula, also called Messier 17, is a gas cloud where new stars are forming. Located 5000 light years from Earth, M17 is a near neighbor and can be studied in exquisite detail with an instrument such as UIST. The intense ultraviolet radiation from young, hot stars blasts the atoms in clouds of interstellar gas, making them glow brightly as seen in the bottom right of the UIST image.


One of the most exciting new features of UIST is its ’image slicer’ or Integral Field Unit (IFU). The IFU ’slices’ the light from an astronomical target into thin sections. Each slice is then spread out to make a spectrum, rather like the rainbows produced when light passes through a prism of glass. Astronomers can use these spectra to investigate the interactions between stars, cosmic dust and gas in complex objects like galaxies.

The image slicer was tested in UIST’s first night on UKIRT. The galaxy NGC1068, 47 million light years from Earth, was chosen for the observations. This galaxy is known to have an active nucleus, or centre, which is a perfect target for the image slicer. The IFU creates an infrared ’data cube’ from the galaxy’s nucleus in a single observation. This can be sliced in one direction to show the appearance of the nucleus at a single infrared wavelength, or at right angles to produce spectra across the entire nucleus.

The UIST team have spent five weeks commissioning and installing the instrument on UKIRT. The telescope is situated atop Mauna Kea on the Big Island of Hawaii, which is one of the best sites in the world for astronomy. This follows five years of construction at the ATC in Edinburgh, where the team overcame many technological challenges.

Dr Ramsay Howat explained "At infrared wavelengths, the ambient heat of the instrument itself creates unwanted background light. To avoid this, the entire 750kg instrument is cooled inside a cryostat to about -200C, just 70 degrees above absolute zero. The dinner plate sized wheels that allow different optical components to be selected have to be rotated to within 1/250 of a degree, and the optical pathways must stay precisely aligned even as the instrument shrinks in the extreme cold."

At the heart of UIST is an extremely sensitive infrared detector with a million pixels - 16 times more than the previous spectrometer ’CGS4’. UIST combines and improves upon the capabilities of the instruments previously on the telescope.

Dr Andy Adamson, Director of UKIRT, is extremely excited about the future with UIST. "Combining the power of UIST imaging and spectroscopy with the telescope’s excellent image quality will revolutionise observations at UKIRT. We’ll be able to image objects of interest and analyse them spectrally, all with the same instrument."

Douglas Pierce-Price | EurekAlert!

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>