Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers slice and dice galaxies

04.10.2002


New views of star birth and the heart of a spiral galaxy have been seen by a state-of-the-art astronomical instrument on its first night. The new UKIRT Imaging Spectrometer (UIST) has a revolutionary ability to ’slice’ any object in the sky into sections, producing a three dimensional view of the conditions throughout entire galaxies in a single observation. UIST has just been installed on the United Kingdom Infrared Telescope (UKIRT) in Hawaii.


UIST infrared image of the Omega Nebula, a site of star formation 5000 light years from Earth
Image: Joint Astronomy Centre



Project scientist Suzanne Ramsay Howat from the UK Astronomy Technology Centre (ATC) in Edinburgh said "UIST will give astronomers using UKIRT a unique way of viewing the Universe, keeping this telescope at the cutting-edge of science".

The instrument saw its ’First Light’ on the night of 24th September, when it was trained on the Omega Nebula. This nebula, also called Messier 17, is a gas cloud where new stars are forming. Located 5000 light years from Earth, M17 is a near neighbor and can be studied in exquisite detail with an instrument such as UIST. The intense ultraviolet radiation from young, hot stars blasts the atoms in clouds of interstellar gas, making them glow brightly as seen in the bottom right of the UIST image.


One of the most exciting new features of UIST is its ’image slicer’ or Integral Field Unit (IFU). The IFU ’slices’ the light from an astronomical target into thin sections. Each slice is then spread out to make a spectrum, rather like the rainbows produced when light passes through a prism of glass. Astronomers can use these spectra to investigate the interactions between stars, cosmic dust and gas in complex objects like galaxies.

The image slicer was tested in UIST’s first night on UKIRT. The galaxy NGC1068, 47 million light years from Earth, was chosen for the observations. This galaxy is known to have an active nucleus, or centre, which is a perfect target for the image slicer. The IFU creates an infrared ’data cube’ from the galaxy’s nucleus in a single observation. This can be sliced in one direction to show the appearance of the nucleus at a single infrared wavelength, or at right angles to produce spectra across the entire nucleus.

The UIST team have spent five weeks commissioning and installing the instrument on UKIRT. The telescope is situated atop Mauna Kea on the Big Island of Hawaii, which is one of the best sites in the world for astronomy. This follows five years of construction at the ATC in Edinburgh, where the team overcame many technological challenges.

Dr Ramsay Howat explained "At infrared wavelengths, the ambient heat of the instrument itself creates unwanted background light. To avoid this, the entire 750kg instrument is cooled inside a cryostat to about -200C, just 70 degrees above absolute zero. The dinner plate sized wheels that allow different optical components to be selected have to be rotated to within 1/250 of a degree, and the optical pathways must stay precisely aligned even as the instrument shrinks in the extreme cold."

At the heart of UIST is an extremely sensitive infrared detector with a million pixels - 16 times more than the previous spectrometer ’CGS4’. UIST combines and improves upon the capabilities of the instruments previously on the telescope.

Dr Andy Adamson, Director of UKIRT, is extremely excited about the future with UIST. "Combining the power of UIST imaging and spectroscopy with the telescope’s excellent image quality will revolutionise observations at UKIRT. We’ll be able to image objects of interest and analyse them spectrally, all with the same instrument."

Douglas Pierce-Price | EurekAlert!

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>