Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Can Nanotubes Be Engineered to Superconduct?


Study Suggests Promising New Avenues for Nanotube Research

Superconducting nanotubes may lie on the technology horizon, suggests a theoretical study recently published by researchers from the Commerce Department’s National Institute of Standards and Technology (NIST), the University of Pennsylvania, and Bilkent University in Turkey.

The intriguing possibility is the team’s most recent finding in a spate of studies showing how changing the shape of tiny single-walled tubes of carbon may open a potential mother lode of technologically useful properties. The theoretical investigations are pointing out productive paths for other researchers to follow in experiments that pursue opportunities to make new materials and technologies with nanotubes.

Although formidable obstacles remain, nanotubes were discovered only about a decade ago, and initial product offerings are beginning to edge onto the market.

"Carbon nanotubes are now considered to be building blocks of future electronic and mechanical devices," explains Taner Yildirim, a physicist at the NIST Center for Neutron Research. "We’ll get there quicker if we have a good understanding of the properties of the materials and the interactions among them."

The new calculations by Yildirim and his colleagues indicate that strategically placing hydrogen on the exterior of so-called zigzag nanotubes leads to dense concentrations of charge-carrying electrons just below the material’s conduction band.

In fact, the structure of the molecules-initially resembling cylindrical rolls of chicken wire-becomes rectangular, with a carbon atom at each corner. During the structural makeover, the nanotubes become diamond-like and are transformed from insulators to metals.

The result, says Yildirim, is a "four wire nanocable." Because of the high density of electrons in this particular configuration, he adds, it may be possible to chemically engineer nanotube wires that are superconducting.

Depending on the initial geometry of the nanotubes and on the pattern of hydrogen coverage on tube walls, electronic structures will vary greatly among the resultant materials, as will their properties. The team’s calculations indicate that selective bonding of hydrogen to nanotubes can give rise to a number of potentially useful applications in the emerging field of molecular electronics.

In an earlier study, team members and another collaborator predicted that, when exposed to external pressure, nanotubes will bind tightly and form stable ropelike networks. Published in late 2000, the prediction was later verified in experiments by other researchers.

Subsequent studies published by the team indicate that the chemical and electrical properties of a single-walled carbon nanotubes can be controlled through a reversible process called mechanical deformation. Flattening the radius of a nanotube so that it becomes elliptical, says Yildirim, alters the arrangement of electrons, suggesting an approach to engineering the gap between different bands of electrons within the materials.

"Our calculations indicate that, with radial deformation, it is possible to close the band gap and make an insulating nanotube metallic and vice versa," Yildirim explains. If verified in experiments, this predicted capability could yield new types of carbon-based materials and a host of novel devices built using nanotubes with properties optimized for specific applications.

The work was partially supported by grants from the National Science Foundation and the Scientific and Technical Research Council of Turkey.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurements, standards and technology to enhance productivity, facilitate trade and improve the quality of life.

- 30 -

NOTE: "Effects of hydrogen adsorption on single-wall carbon nanotubes: Metallic hydrogen decoration," by O. Gulseren, T. Yildirim, and S. Ciraci, was published in Physical Review B, Vol. 66, Article121401. A copy of the paper, in Adobe Acrobat PDF format, is available from Mark Bello at

Mark Bello | NIST
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>