Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Nanotubes Be Engineered to Superconduct?

24.09.2002


Study Suggests Promising New Avenues for Nanotube Research



Superconducting nanotubes may lie on the technology horizon, suggests a theoretical study recently published by researchers from the Commerce Department’s National Institute of Standards and Technology (NIST), the University of Pennsylvania, and Bilkent University in Turkey.

The intriguing possibility is the team’s most recent finding in a spate of studies showing how changing the shape of tiny single-walled tubes of carbon may open a potential mother lode of technologically useful properties. The theoretical investigations are pointing out productive paths for other researchers to follow in experiments that pursue opportunities to make new materials and technologies with nanotubes.


Although formidable obstacles remain, nanotubes were discovered only about a decade ago, and initial product offerings are beginning to edge onto the market.

"Carbon nanotubes are now considered to be building blocks of future electronic and mechanical devices," explains Taner Yildirim, a physicist at the NIST Center for Neutron Research. "We’ll get there quicker if we have a good understanding of the properties of the materials and the interactions among them."

The new calculations by Yildirim and his colleagues indicate that strategically placing hydrogen on the exterior of so-called zigzag nanotubes leads to dense concentrations of charge-carrying electrons just below the material’s conduction band.

In fact, the structure of the molecules-initially resembling cylindrical rolls of chicken wire-becomes rectangular, with a carbon atom at each corner. During the structural makeover, the nanotubes become diamond-like and are transformed from insulators to metals.

The result, says Yildirim, is a "four wire nanocable." Because of the high density of electrons in this particular configuration, he adds, it may be possible to chemically engineer nanotube wires that are superconducting.

Depending on the initial geometry of the nanotubes and on the pattern of hydrogen coverage on tube walls, electronic structures will vary greatly among the resultant materials, as will their properties. The team’s calculations indicate that selective bonding of hydrogen to nanotubes can give rise to a number of potentially useful applications in the emerging field of molecular electronics.

In an earlier study, team members and another collaborator predicted that, when exposed to external pressure, nanotubes will bind tightly and form stable ropelike networks. Published in late 2000, the prediction was later verified in experiments by other researchers.

Subsequent studies published by the team indicate that the chemical and electrical properties of a single-walled carbon nanotubes can be controlled through a reversible process called mechanical deformation. Flattening the radius of a nanotube so that it becomes elliptical, says Yildirim, alters the arrangement of electrons, suggesting an approach to engineering the gap between different bands of electrons within the materials.

"Our calculations indicate that, with radial deformation, it is possible to close the band gap and make an insulating nanotube metallic and vice versa," Yildirim explains. If verified in experiments, this predicted capability could yield new types of carbon-based materials and a host of novel devices built using nanotubes with properties optimized for specific applications.

The work was partially supported by grants from the National Science Foundation and the Scientific and Technical Research Council of Turkey.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurements, standards and technology to enhance productivity, facilitate trade and improve the quality of life.

- 30 -

NOTE: "Effects of hydrogen adsorption on single-wall carbon nanotubes: Metallic hydrogen decoration," by O. Gulseren, T. Yildirim, and S. Ciraci, was published in Physical Review B, Vol. 66, Article121401. A copy of the paper, in Adobe Acrobat PDF format, is available from Mark Bello at mark.bello@nist.gov.

Mark Bello | NIST
Further information:
http://www.ncnr.nist.gov/staff/taner/nanotube/

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>