Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Nanotubes Be Engineered to Superconduct?

24.09.2002


Study Suggests Promising New Avenues for Nanotube Research



Superconducting nanotubes may lie on the technology horizon, suggests a theoretical study recently published by researchers from the Commerce Department’s National Institute of Standards and Technology (NIST), the University of Pennsylvania, and Bilkent University in Turkey.

The intriguing possibility is the team’s most recent finding in a spate of studies showing how changing the shape of tiny single-walled tubes of carbon may open a potential mother lode of technologically useful properties. The theoretical investigations are pointing out productive paths for other researchers to follow in experiments that pursue opportunities to make new materials and technologies with nanotubes.


Although formidable obstacles remain, nanotubes were discovered only about a decade ago, and initial product offerings are beginning to edge onto the market.

"Carbon nanotubes are now considered to be building blocks of future electronic and mechanical devices," explains Taner Yildirim, a physicist at the NIST Center for Neutron Research. "We’ll get there quicker if we have a good understanding of the properties of the materials and the interactions among them."

The new calculations by Yildirim and his colleagues indicate that strategically placing hydrogen on the exterior of so-called zigzag nanotubes leads to dense concentrations of charge-carrying electrons just below the material’s conduction band.

In fact, the structure of the molecules-initially resembling cylindrical rolls of chicken wire-becomes rectangular, with a carbon atom at each corner. During the structural makeover, the nanotubes become diamond-like and are transformed from insulators to metals.

The result, says Yildirim, is a "four wire nanocable." Because of the high density of electrons in this particular configuration, he adds, it may be possible to chemically engineer nanotube wires that are superconducting.

Depending on the initial geometry of the nanotubes and on the pattern of hydrogen coverage on tube walls, electronic structures will vary greatly among the resultant materials, as will their properties. The team’s calculations indicate that selective bonding of hydrogen to nanotubes can give rise to a number of potentially useful applications in the emerging field of molecular electronics.

In an earlier study, team members and another collaborator predicted that, when exposed to external pressure, nanotubes will bind tightly and form stable ropelike networks. Published in late 2000, the prediction was later verified in experiments by other researchers.

Subsequent studies published by the team indicate that the chemical and electrical properties of a single-walled carbon nanotubes can be controlled through a reversible process called mechanical deformation. Flattening the radius of a nanotube so that it becomes elliptical, says Yildirim, alters the arrangement of electrons, suggesting an approach to engineering the gap between different bands of electrons within the materials.

"Our calculations indicate that, with radial deformation, it is possible to close the band gap and make an insulating nanotube metallic and vice versa," Yildirim explains. If verified in experiments, this predicted capability could yield new types of carbon-based materials and a host of novel devices built using nanotubes with properties optimized for specific applications.

The work was partially supported by grants from the National Science Foundation and the Scientific and Technical Research Council of Turkey.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurements, standards and technology to enhance productivity, facilitate trade and improve the quality of life.

- 30 -

NOTE: "Effects of hydrogen adsorption on single-wall carbon nanotubes: Metallic hydrogen decoration," by O. Gulseren, T. Yildirim, and S. Ciraci, was published in Physical Review B, Vol. 66, Article121401. A copy of the paper, in Adobe Acrobat PDF format, is available from Mark Bello at mark.bello@nist.gov.

Mark Bello | NIST
Further information:
http://www.ncnr.nist.gov/staff/taner/nanotube/

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>