Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

100th Extra-solar planet gives clues to origins of planets

17.09.2002


British astronomers, together with Australian and American colleagues, have used the 3.9m Anglo-Australian Telescope [AAT] in New South Wales, Australia to discover a new planet outside our Solar System – the 100th to be detected. The discovery, which is part of a search for solar systems that resemble our own, will be announced today (Tuesday) at a conference on "The origin of life" in Graz, Austria. This takes the total number of planets found outside our solar system to 100, and scientists are now seeing a pattern in the orbits, giving clues to how they form.



The new planet, which has a mass about that of Jupiter, circles its star Tau1 Gruis about every four years. Tau1 Gruis can be found in the constellation Grus (the crane) and is about 100 light years away from Earth. The planet is three times as far from its star as the Earth is from the Sun.

`Now our searches have become precise enough to find many planets in orbits like those in our Solar System, we are seeing clues which may help us understand how planets are formed.` said UK team leader Hugh Jones of Liverpool John Moores University. `We are seeing a pattern for these planets to be of two types, those very close-in and another set with orbits further out. This Tau1 Gruis planet builds this second group. Why are there these two groups? We hope the theorists will be able to explain this.`


The long-term goal of this programme is the detection of true analogues to the Solar System. This discovery of a companion planet to the Tau1 Gruis star with a relatively long-period orbit and mass similar to that of Jupiter is a step toward this goal. The discovery of other such planets and planetary satellites within the next decade will help astronomers assess the Solar System`s place in the galaxy and whether planetary systems like our own are common or rare.

`The Anglo-Australian Telescope is providing the most accurate planet-search observations in the Southern Hemisphere`, said Dr Alan Penny, the other UK team member from the Rutherford Appleton Laboratory.

The researchers have found that as they probe for planets in larger orbits, the distribution of planets around stars is quite different from that of binary stars orbiting one another, where there is a smooth distribution of orbits. In contrast to the early discoveries of exoplanets, we now find that less than 1 in 5 exoplanets are to be found very close to their stars, a few orbiting with a period of 5 to 50 days but most giant planets are orbiting at large distances from their host stars. This supports the idea that they are formed at Jupiter-like distances from their host star. Dependent on the details of the early solar system, most giant planets probably spiral inwards towards their star until they reach a point where a lack of frictional forces stops their further migration.

To find evidence of planets, the astronomers use a high-precision technique developed by Paul Butler of the Carnegie Institute of Washington and Geoff Marcy of the University of California at Berkeley to measure how much a star "wobbles" in space as it is affected by a planet`s gravity. As an unseen planet orbits a distant star, the gravitational pull causes the star to move back and forth in space. That wobble can be detected by the `Doppler shifting` it causes in the star`s light. The AAT team measure the Doppler shift of stars to an accuracy of 3 metres per second – bicycling speed. This very high precision allows the team to find planets.



Julia Maddock | alfa

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>