Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

100th Extra-solar planet gives clues to origins of planets

17.09.2002


British astronomers, together with Australian and American colleagues, have used the 3.9m Anglo-Australian Telescope [AAT] in New South Wales, Australia to discover a new planet outside our Solar System – the 100th to be detected. The discovery, which is part of a search for solar systems that resemble our own, will be announced today (Tuesday) at a conference on "The origin of life" in Graz, Austria. This takes the total number of planets found outside our solar system to 100, and scientists are now seeing a pattern in the orbits, giving clues to how they form.



The new planet, which has a mass about that of Jupiter, circles its star Tau1 Gruis about every four years. Tau1 Gruis can be found in the constellation Grus (the crane) and is about 100 light years away from Earth. The planet is three times as far from its star as the Earth is from the Sun.

`Now our searches have become precise enough to find many planets in orbits like those in our Solar System, we are seeing clues which may help us understand how planets are formed.` said UK team leader Hugh Jones of Liverpool John Moores University. `We are seeing a pattern for these planets to be of two types, those very close-in and another set with orbits further out. This Tau1 Gruis planet builds this second group. Why are there these two groups? We hope the theorists will be able to explain this.`


The long-term goal of this programme is the detection of true analogues to the Solar System. This discovery of a companion planet to the Tau1 Gruis star with a relatively long-period orbit and mass similar to that of Jupiter is a step toward this goal. The discovery of other such planets and planetary satellites within the next decade will help astronomers assess the Solar System`s place in the galaxy and whether planetary systems like our own are common or rare.

`The Anglo-Australian Telescope is providing the most accurate planet-search observations in the Southern Hemisphere`, said Dr Alan Penny, the other UK team member from the Rutherford Appleton Laboratory.

The researchers have found that as they probe for planets in larger orbits, the distribution of planets around stars is quite different from that of binary stars orbiting one another, where there is a smooth distribution of orbits. In contrast to the early discoveries of exoplanets, we now find that less than 1 in 5 exoplanets are to be found very close to their stars, a few orbiting with a period of 5 to 50 days but most giant planets are orbiting at large distances from their host stars. This supports the idea that they are formed at Jupiter-like distances from their host star. Dependent on the details of the early solar system, most giant planets probably spiral inwards towards their star until they reach a point where a lack of frictional forces stops their further migration.

To find evidence of planets, the astronomers use a high-precision technique developed by Paul Butler of the Carnegie Institute of Washington and Geoff Marcy of the University of California at Berkeley to measure how much a star "wobbles" in space as it is affected by a planet`s gravity. As an unseen planet orbits a distant star, the gravitational pull causes the star to move back and forth in space. That wobble can be detected by the `Doppler shifting` it causes in the star`s light. The AAT team measure the Doppler shift of stars to an accuracy of 3 metres per second – bicycling speed. This very high precision allows the team to find planets.



Julia Maddock | alfa

More articles from Physics and Astronomy:

nachricht PPPL physicist uncovers clues to mechanism behind magnetic reconnection
24.01.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>