Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA to look for the missing link in gravity

12.09.2002


Although you can never be certain of predicting future developments in science, there is a good chance of a fundamental breakthrough in physics soon. With a series of unique experiments and missions designed to test our understanding of gravity, the European Space Agency (ESA) hopes to get to the very bottom of it.

Scientists will study space phenomena that do not seem to conform to our perceived understanding of gravity. In this way, they hope to develop a greater comprehension of the Universe.
Gravity is one of the four fundamental forces of nature. It shapes the Universe around us, allowing planets, stars and galaxies to form. However, the more scientists study gravity and its effects on celestial objects, the more mysteries they seem to uncover. One example is the so-called `Pioneer anomaly`, named after the NASA space probes Pioneer 10 and 11, on which the effect was first noticed. The anomaly was revealed when a number of spacecraft were seen to be affected by an unknown force that slowed them down. The same behaviour has now been detected on NASA`s Galileo and the joint ESA-NASA Ulysses spacecraft.


Scientists have known for a long time that there appears to be `too much` gravity in the Universe. They can observe the effects of gravitational forces at work, but the origin of these forces cannot be identified. This `excess` of gravity is usually referred to as `the missing mass problem`, since scientists assume that only matter can create gravity. It is therefore supposed that the Universe is filled with large quantities of `dark matter` that has yet to be detected. What if that assumption is wrong?

Some theories suggest that gravity might pull a little harder at extreme distances than had previously been considered, so the concept of dark matter may not even be necessary. Alternatively, the anomalies may be the result of a fifth force of nature: one that is very weak and only shows up in the remotest regions of space. Space is an ideal testing ground to examine the existing theories. In the apparent weightlessness of space, scientists can detect the most delicate of forces and can measure them with extreme accuracy.

Developing an ambitious series of space experiments and missions, ESA is focusing its efforts on testing Albert Einstein`s Theory of General Relativity, the most advanced description of gravity ever formulated. One of the first objectives is the detection of gravitational waves. General Relativity has predicted their existence but, so far, they remain undetected. These waves should travel through space like ripples on a pond. LISA, a joint ESA-NASA mission, will be the first space mission to attempt to detect such gravitational waves. Finding them would be the ultimate test of General Relativity.

A second objective, to be tested by the ESA Gaia and BepiColombo missions, will be to measure precisely how matter distorts space, searching for any deviation in the amount predicted by General Relativity. Microscope, an ESA mission carried out in coordination with the French National Space Agency (CNES), is designed to test a concept from General Relativity called The Principle of Equivalence. According to this, objects are accelerated by gravity in the same way, independent of their mass and chemical composition. If Microscope detects a violation of this principle, it could be the clearest sign yet of a new dimension to gravity, known as quantum gravity.

Quantum gravity is a much-sought-after theory. Its purpose is to reconcile Einstein`s General Relativity with quantum physics, the most advanced theory describing the fundamental forces in Nature, with the exception of gravity. Quantum gravity supposes that space is granular on the smallest of scales. In a similar way, for example, a beach appears smooth from a distance but is actually composed of individual pieces of sand. Hyper, a mission currently under study at ESA would attempt to detect the quantum granularity of space, as one of its investigations into gravity. Looking further into the future, ESA has taken the first steps in defining a mission which would examine directly the Pioneer anomaly.

With this series of missions, ESA will carry out a unique investigation into the very nature of gravity. This may well provide the next fundamental breakthrough in our understanding of the Universe.

Dr Michael Perryman | alfa
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>