Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular engineers consult nature

11.09.2002


Nature has been manipulating structures on the atomic and molecular scale for millions of years, in comparison humans have only been developing these techniques over the last few decades. Molecular engineering builds structures and devices at the smallest scales imaginable, aiming to make better materials, new types of information technologies, biomedical devices and much more. In an article, `Natural strategies for the molecular engineer`, published today in the Institute of Physics` journal, Nanotechnology, Philip Ball, consultant editor of Nature, discusses how molecular engineers can learn from the designs and tricks employed by nature - in processes ranging from catalysis to mechanical motion, energy conversion, information processing and materials synthesis.



Ball said: "In several sectors of engineering, the components have been shrinking in size for many decades. Now the scale is approaching the proportions of living cells, and we can see that engineers are confronting many, if not most, of the same challenges as biological cells. They need to make materials to harness, convert and transmit energy, to store and process information and to generate motion."

However, Ball points out that nature`s solutions are often quite different to those we use. For example, leaves are essentially cheap and reasonably efficient solar cells and some of nature`s catalysts, enzymes, carry out chemical reactions of a delicacy far exceeding that of their man-made industrial counterparts.


Although nature has much to teach us, Ball also warns that we should be careful of always assuming that `nature knows best`. The cell does not necessarily share the same objectives as an engineer and there is no reason to believe that nature always does things the most efficient way. Bell suggests that molecular engineers adopt a selective attitude, picking and choosing what may be useful from nature`s bag of tricks.

Joanne Aslett | alfa
Further information:
http://www.iop.org/journals/nano

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>